Ultrastructure and stereological analysis of Leydig cells

  • Hiroshi Mori
Part of the Electron Microscopy in Biology and Medicine book series (EMBM, volume 1)


Shortly after the demonstration of the androgenic function of the testis by Berthold, Leydig reported in 1850 the presence of testicular interstitial cells in some species (1). These cells now bear his name. In the 1930s, progress in the study of pituitary hormones substantially established the Leydig cells to be the main source of testosterone in the male. Since the 1960s, the use of electron microscopy has revealed the morphological details of this cell type. The relation of the ultrastructure to pertinent biochemical and physiological information has opened a new dimension of studies of the male reproductive system.


Lipid Droplet Leydig Cell Seminiferous Tubule Smooth Endoplasmic Reticulum Testis Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leydig F: Zur Anatomie der männlichen Geschlechtsorgane und Analdrüsen der Säugethiere. Z Wiss Zool 2: 1–57, 1850.Google Scholar
  2. 2.
    Leeson CR: Observations on the fine structure of rat interstitial tissue. Acta Anat 52: 34–18, 1963.PubMedCrossRefGoogle Scholar
  3. 3.
    Christensen AK, Fawcett DW: The fine structure of testicular interstitial cells in mice. Am J Anat 118: 551–572, 1966.PubMedCrossRefGoogle Scholar
  4. 4.
    Christensen AK, Fawcett DW: The normal fine structure of opossum testicular interstitial cells. J Biophys Biochem Cytol 9: 653–670, 1961.PubMedCrossRefGoogle Scholar
  5. 5.
    Burgos MH, Vitale-Calpe R, Aoki A: Fine structure of the testis and its functional significance. In: The testis. Johnson AD, Gomes WR, Vandemark NL (eds), New York, Vandemark NL (eds), 1970, vol 1, pp 551–649.Google Scholar
  6. 6.
    Belt WD, Cavazos LF: Fine structure of the interstitial cells of Leydig in the boar. Anat Ree 158: 333–349, 1967.CrossRefGoogle Scholar
  7. 7.
    Hooker CW: The intertubular tissue of the testis. In: The testis Johnson AD, Gomes WR, Vandemark NL (eds), New York, Academic Press, 1970, vol. 1, pp 483–550.Google Scholar
  8. 8.
    Christensen AK: Leydig cells. In: Handbook of Physiology. Hamilton DW, Greep RO (eds), Am Physiol Soc, Washington DC, 1975, sec 7, vol V pp 57–94.Google Scholar
  9. 9.
    Hall PF: Endocrinology in the testis. In: The testis. Johnson AD, Gomes WR, Vandemark NL (eds), New York, Vandemark NL (eds), 1970, vol 2, pp 1–71.Google Scholar
  10. 10.
    Reinke Fr: Beiträge zur Histologie des Menschen. I. Ueber Krystalloidbildungen in den interstitiellen Zellen des menschlichen Hodens. Arch Mikrosk Anat Entwicklungsgesch 47: 34 — 44, 1896.CrossRefGoogle Scholar
  11. 11.
    Fawcett DW, Neaves WB, Flores MN: Comparative observations on intertubular lymphatics and the organization of the interstitial tissue of the mammalian testis. Biol Reprod 9: 500–532, 1973.PubMedGoogle Scholar
  12. 12.
    Idelman S: Ultrastructure of the mammalian adrenal cortex. Int Rev Cytol 27: 181–281, 1970.PubMedCrossRefGoogle Scholar
  13. 13.
    Crisp TM, Dessouky DA, Denys FR: The fine structure of the human corpus luteum of early pregnancy and during the progestational phase of the menstrual cycle. Am J Anat 127: 37–70, 1970.PubMedCrossRefGoogle Scholar
  14. 14.
    Mori H: The fine structure of interstitial gland cells in rabbit ovaries. Med J Osaka Univ 20: 215–233, 1970.PubMedGoogle Scholar
  15. 15.
    Murakami M, Kitahara Y: Cylindrical bodies derived from endoplasmic reticulum in Leydig’s cell of the rat testis. J Electron Microsc 20: 318–323, 1971.Google Scholar
  16. 16.
    Frank AL, Christensen AK: Localization of acid phosphatase in lipofuscin granules and possible autophagic vacuoles in interstitial cells of the guinea pig testis. J Cell Biol 36: 1–13, 1968.CrossRefGoogle Scholar
  17. 17.
    Nagano T, Ohtsuki I: Reinvestigation of the fine structure of Reinke’s crystal in the human testicular interstitial cell. J Cell Biol 51: 148–161, 1971.PubMedCrossRefGoogle Scholar
  18. 18.
    Mori H, Fukunishi R, Fujii M, Hataji K, Shiraishi T, Matsumoto K: Stereological analysis of Reinke’s crystals in human Leydig cells. Virchows Arch A 380: 1–9, 1978.Google Scholar
  19. 19.
    Christensen AK, Peacock KC: Increase in Leydig cell number in testes of adult rats treated chronically with an excess of human chorionic gonadotropin. Biol Reprod 22: 383–391, 1980.PubMedGoogle Scholar
  20. 20.
    Weibel ER, Bolender RP: Stereological techniques for electron micros copic morphometry. In: Principles and techniques of electron microscopy. Hayat MA (ed), New York, Hayat MA (ed), 1973, vol 3, pp 237–296.Google Scholar
  21. 21.
    Dykes JRW: Histometric assessment of human testicular biopsies. J Path 97: 429–440, 1969.PubMedCrossRefGoogle Scholar
  22. 22.
    Ahmad KN, Lennox B, Mack WS: Estimation of the volume of Leydig cells in man. Lancet 2: 46M64, 1969.Google Scholar
  23. 23.
    Ewing LL, Zirkin BR, Cochran RC, Kromann N, Peters C, Ruis-Bravo N: Testosterone secretion by rat, rabbit, guinea pig, dog, and hamster testes perfused in vitro: Correlation with Leydig cell mass. Endocrinology 105: 1135–1142, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Holstein AF, Wartenberg H, Vossmeyer J: Zur Cytologie der pränatalen Gonadenentwicklung beim Menschen. III. Die Entwicklung der Leydigzellen im Hoden von Embryonen und Feten. Z Anat Entwickl-Gesch 135: 43–66, 1971.CrossRefGoogle Scholar
  25. 25.
    Neaves WB: Changes in testicular Leydig cells and in plasma testosterone levels among seasonally breeding rock hyrax. Biol Reprod 8: 451–466, 1973.PubMedGoogle Scholar
  26. 26.
    Bergh A, Damber J-E: Morphometric and functional investigation on the Leydig cells in experimental unilateral cryptorchism in the rat. Int J Androl 1: 549–562, 1978.CrossRefGoogle Scholar
  27. 27.
    Kerr JB, Rich KA, de Kretser DM: Alterations of the fine structure and androgen secretion of the interstitial cells in the experimentally cryptorchid rat testis. Biol Reprod 20: 409–422, 1979.PubMedCrossRefGoogle Scholar
  28. 28.
    Zirkin BR, Ewing LL, Kromann N, Cochran RC: Testosterone secretion by rat, rabbit, guinea pig, dog, and hamster testes perfused in vitro: Correlation with Leydig cell ultrastructure. Endocrinology 107: 1867–1874, 1980.PubMedCrossRefGoogle Scholar
  29. 29.
    Mori H, Christensen AK: Morphometric analysis of Leydig cells in the normal rat testis. J Cell Biol 84: 340–354, 1980.PubMedCrossRefGoogle Scholar
  30. 30.
    Mori H, Shimizu D, Takeda A, Takioka Y, Fukunishi R: Stereological analysis of Leydig cells in normal guinea pig testis. J Electron Microsc 29: 8–21, 1980.Google Scholar
  31. 31.
    Mori H, Kadota A, Fukunishi R, Kukita H, Takeuchi N, Matsumoto K: Effects of a cholesterol-rich-diet and a hypolipidemic drug (Clofibrate, CP1B) on Leydig cells in rats. Stereological and biochemical analysis. Andrologia 12: 281–291, 1980.PubMedCrossRefGoogle Scholar
  32. 32.
    Mori H, Hiromoto N, Nakahara M, Shiraishi T: Stereological analysis of Leydig cell ultrastructure in aged humans. J Clin Endocrinol Metab 55: 634–641, 1982.PubMedCrossRefGoogle Scholar
  33. 33.
    Kaler LW, Neaves WB: Attrition of the human Leydig cell population with advancing age. Anat Ree 192: 513–518, 1978.CrossRefGoogle Scholar
  34. 34.
    Free MJ, Tillson SA: Secretion rate of testicular steroids in the conscious and halothane-anesthetized rat. Endocrinology 93: 874–879, 1973.PubMedCrossRefGoogle Scholar
  35. 35.
    Rohr HP, Bartsch G, Eichenberger P, Rasser Y, Kaiser Ch, Keller M: Ultrastructural morphometric analysis of the unstimulated adrenal cortex of rats. J Ultrastruct Res 54: 11–21, 1976.PubMedCrossRefGoogle Scholar
  36. 36.
    Black VH, Russo JJ: Stereological analysis of the guinea pig adrenal: Effects of dexamethasone and ACTH treatment with emphasis on the inner cortex. Am J Anat 159: 85–120, 1980.PubMedCrossRefGoogle Scholar
  37. 37.
    Morris MD, Chaikoff IL: The origin of cholesterol in liver, small intestine, adrenal gland, and testis of the rat: Dietary versus endogenous contributions. J Biol Chem 234: 1095–1097, 1959.PubMedGoogle Scholar
  38. 38.
    Werbin H, Chaikoff IL: Utilization of adrenal gland cholesterol for synthesis of Cortisol by the intact normal and the ACTH-treated guinea pig. Arch Biochem Biophys 93: 476–482, 1961.PubMedCrossRefGoogle Scholar
  39. 39.
    Sternberg WH: The morphology, androgenic function, hyperplasia, and tumors of the human ovarian hilus cells. Am J Pathol 25: 493–521, 1949.PubMedGoogle Scholar
  40. 40.
    Scully RE, Cohen RB: Ganglioneuroma of adrenal medulla containing cells morphologically identical to hilus cells (extraparenchymal Leydig cells). Cancer 14: 42M25, 1961.Google Scholar
  41. 41.
    Magalhaes MC: A new crystal-containing cell in human adrenal cortex. J Cell Biol 55: 126–133, 1972.PubMedCrossRefGoogle Scholar
  42. 42.
    Peters KH: Die Ultrastruktur heterotoper Leydigzellen beim Menschen. Andrologia 9: 337–348, 1977.PubMedCrossRefGoogle Scholar
  43. 43.
    Mori H, Shiraishi T, Matsumoto K: Ectopic Leydig cells in seminiferous tubules of an infertile human male with a chromosomal aberration. Andrologia 10: 434–443, 1978.PubMedCrossRefGoogle Scholar
  44. 44.
    Schulze C, Holstein A-F: Leydig cells within the lamina propria of seminiferous tubules in four patients with azoospermia. Andrologia 10: 444–452, 1978.PubMedCrossRefGoogle Scholar
  45. 45.
    Mori H, Matsumoto K: Constant occurrence of adrenocortical tissue in the juvenile rabbit ovary. Amer J Anat 141: 73–90, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Boston, The Hague, Dordrecht, Lancaster 1984

Authors and Affiliations

  • Hiroshi Mori
    • 1
  1. 1.Department of PathologyOsaka University School of MedicineKitaku, OsakaJapan

Personalised recommendations