Skip to main content

Isomyosin Shifts in Normal and Induced Cardiac Growth

  • Chapter
The Developing Heart

Abstract

Myosin is the most abundant protein of the contractile apparatus, representing approximately 60% of the total myofibrillar proteins. Each molecule of myosin is composed of two heavy chains (MHC, 200,000 daltons), two regulatory or phosphorylatable light chains (LC2,17,000 to 20,000 daltons), and two alkali light chains, non-phosphorylatable (LC1,29,000 to 22,000 daltons and, in skeletal muscles, LC3 15,000 to 16,000 daltons). The whole molecule can be cleaved in several regions or domains: sub-fragments 1 and 2 (S1 and S2), heavy meromyosin (HMM), and light meromyosin (LMM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barany, M. 1967. AT Pase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50: 197–216.

    Article  PubMed  Google Scholar 

  2. Pette, D., ed. 1980. Plasticity of muscle. Berlin, New York: Walter de Gruyter.

    Google Scholar 

  3. Whalen, R.G.; Sell, S.M.; Butler-Browne, G.S.; Schwartz, K.; Bouveret, P.; and Pinset-Härström, I. 1981. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature 292: 805–809.

    Article  PubMed  CAS  Google Scholar 

  4. Whalen, R.G.; Butler-Browne, G.S.; and Gros, F. 1978. Identification of a novel form of myosin light chain present in embryonic muscle tissue and cultured muscle cells. J. Mol. Biol. 126: 415–431.

    Article  PubMed  CAS  Google Scholar 

  5. Hoh, J.H.; McGrath, P. A.; and Hale, P.T. 1978. Electrophoretic analysis of multiple forms of rat cardiac myosin: effect of hypophysectomy and thyroxine replacement. J. Mol. Cell. Cardiol. 10: 1053–1076.

    Article  PubMed  CAS  Google Scholar 

  6. D’Albis, A.; Pantaloni, C.; and Bechet, J.J. 1979. An electrophoretic study of native myosin isoenzymes and their subunit content. Eur. J. Biochem. 99: 261–272.

    Article  PubMed  Google Scholar 

  7. Pierobon-Bormioli, S.; Sartore, S.; Vitadello, M.; and Schiaffino, S. 1980. Slow myosins in vertebrate skeletal muscle: an immunofluorescence study. J. Cell Biol. 85: 672–681.

    Article  Google Scholar 

  8. Schwartz, K.; Bouveret, P.; Bercovici, J.; and Swynghedauw, B. 1978. An immunochemical difference between myosins from normal and hypertrophied rat hearts. FEBS Lett. 93: 137–140.

    Article  PubMed  CAS  Google Scholar 

  9. Schwartz, K.; Lompré, A.M.; Bouveret, P.; Wisnewsky, C.; and Swynghedauw, B. 1980. Use of antibodies against dodecylsulfate — denatured heavy meromyosins to probe structural differences between muscular myosin isoenzymes. Eur. J. Biochem. 104: 341–346.

    Article  PubMed  CAS  Google Scholar 

  10. Sartore, S.; Gorza, L.; Pierobon-Bormioli, S.; Dalla Libera, L.; and Schiaffino, S. 1981. Myosin types and fiber types in cardiac muscle. I. Ventricular myocardium. J. Cell Biol. 88: 226–233.

    Article  PubMed  CAS  Google Scholar 

  11. Schwartz, K.; Lompré, A.M.; Bouveret, P.; Wisnewsky, C.; and Whalen, R.G. 1982. Comparisons of rat cardiac myosins at fetal stages, in young animals and in hypothyroid adults. J. Biol. Chem. 257: 14412–14418.

    PubMed  CAS  Google Scholar 

  12. Lompré, A.M.; Schwartz, K.; d’Albis, A.; Lacombe, G.; Thiem, N.Y.; and Swynghedauw, B. 1979. Myosin isoenzyme redistribution in chronic heart overload. Nature 282: 105–107.

    Article  PubMed  Google Scholar 

  13. Lompré, A.M.; Han, K.; Bouveret, P.; Richard, C.; and Schwartz, K. 1984. Comparison of the tryptic digestion pattern of Subfragments-1 from VI and V3 rat cardiac isomyosins. Eur. J. Biochem. 139: 459–765.

    Article  PubMed  Google Scholar 

  14. Avrameas, S.; Druet, P.; Masseyeff, R.; and Feldmann, G., eds. 1983. Immunoenzymatic techniques. Amsterdam, New York, Oxford: Elsevier.

    Google Scholar 

  15. Schiaffino, S.; Gorza, L.; and Sartore, S. 1983. Distribution of myosin types in normal and hypertrophic hearts. In Perspectives in cardiovascular research, ed. N. Alpert Vol. 7, pp. 149–166. New York: Raven Press.

    Google Scholar 

  16. Mercadier, J.J.; Bouveret, P.; Wisnewsky, C.; de la Bastie, D.; and Schwartz, K. 1983. Simplified methodology using non-competitive ELISA assay for the quantitation of myosin isoforms. In Immunoenzymatic techniques, ed. S. Avrameas, P. Druet, R. Masseyeff, and G. Feldmann, pp. 329–332. Amsterdam, New York, Oxford: Elsevier.

    Google Scholar 

  17. Clark, W.A.; Everett, A.W.; Ficht, F.W.; Frogner, K.S.;Jakovcic, S.; Rabinowitz, M.; Warner, A.M; and Zak, R. 1980. Characterization of monoclonal antibodies directed against determinants of cardiac myosin heavy chain. Biochem. Biophys. Res. Commun. 95: 1680–1686.

    CAS  Google Scholar 

  18. Léger, J.; Dechesne, C.; Bouvagnet, P.; and Léger, J.J. 1983. Distribution and characterization of myosin variants in normal and hypertrophied human hearts. J. Mol. Cell. Cardiol. Suppl. 2, 15: 37 (abstr.).

    Google Scholar 

  19. Yazaki, Y.; Tsuchimochi, H.; Kuro-o, M.; Kurabayashi, M.; Isobe, M.; Ueda, S.; Nagai, T.; and Takaku, F. 1983. Distribution of myosin isozymes in human atrial and ventricular myocardium. J. Mol. Cell. Cardiol. Suppl. 2 15: 32 (abstr.).

    Google Scholar 

  20. Mahdavi, V.; Periasamy, M.; and Nadal-Ginard, B. 1982. Molecular characterization of two myosin heavy chain genes expressed in the adult heart. Nature 297: 659–664.

    Article  PubMed  CAS  Google Scholar 

  21. Sinha, A.M.; Umeda, P.K.; Kavinsky, C.J.; Rajamanickam, C.; Hsu, H.J.; Jakovcic, S.; and Rabinowitz, M. 1982. Molecular cloning ofmRNA sequences for cardiac α and β form myosin heavy chain: expression in ventricles of normal, hypothyroid and thyrotoxic ventricles. Proc. Natl. Acad. Sci. USA 79: 5847–5851.

    Article  PubMed  CAS  Google Scholar 

  22. Lompré, A.M.; Mercadier, J.J.; Wisnewsky, C.; Bouveret, P.; Pantaloni, C.; d’Albis, A.; and Schwartz, K. 1981. Species and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammals. Develop. Biol. 84: 286–290.

    Article  PubMed  Google Scholar 

  23. Clark, W.A.; Chizzonite, R.A.; Everett, A.W.; Rabinowitz, M.; and Zak, R. 1982. Species correlations between cardiac isomyosins. J. Biol. Chem 257: 5449–5454.

    PubMed  CAS  Google Scholar 

  24. Mercadier, J.J.; Bouveret, P.; Gorza, L.; Schiaffino, S.; Clark, W.A.; Zak, R.; Swynghedauw, B.; and Schwartz, K. 1983. Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ. Res. 53: 52–62.

    PubMed  CAS  Google Scholar 

  25. Hoh, J.F.Y.; Yeoh, G.P.S.; Thomas, M.A.W.; and Higginbottom, L. 1979. Structural differences in the heavy chains of rat ventricular myosin isozymes. FEBS Lett. 97: 330–334.

    Article  PubMed  CAS  Google Scholar 

  26. Long, L.; Fabian, F.; Mason, D.T.; and Wikman-Coffelt, J. 1977. A new cardiac myosin characterized from the canine atria. Biochem. Biophys. Res. Comm. 76: 626–635.

    Article  PubMed  CAS  Google Scholar 

  27. Syrovy, I.; Delcayre, C.; and Swynghedauw, B. 1979. Comparison of AT Pase activity and light subunits in myosins from left and right ventricles and atria in seven mammalian species. J. Mol. Cell. Cardiol. 11: 1129–1135.

    Article  PubMed  CAS  Google Scholar 

  28. Whalen, R.G., and Sell, S.M. 1980. Myosin from fetal hearts contains the skeletal muscle embryonic light chain. Nature 286: 731–733.

    Article  PubMed  CAS  Google Scholar 

  29. Price, K.M.; Littler, W. A.; and Cummins, P. 1980. Human atrial and ventricular myosin light- chain subunits in the adult and during development. Biochem. J. 191: 571–580.

    PubMed  CAS  Google Scholar 

  30. Klotz, C.; Léger, J.J.; and Elzinga, M. 1982. Comparative sequence of myosin light chains from normal and hypertrophied human hearts. Circ. Res. 50: 201–209.

    PubMed  CAS  Google Scholar 

  31. Chizzonite, R.A.; Everett, A.W.; Clark, W. A.; Jakovcic, S.; Rabinowitz, M.; and Zak, R. 1982. Isolation and characterization of two molecular variants of myosin heavy-chain from rabbit ventricle: change in their content during normal growth and after treatment with thyroid hormone. J. Biol. Chem. 257: 2056–2065.

    PubMed  CAS  Google Scholar 

  32. Litten, R.Z.; Martin, B.J.; Low, R.B.; and Alpert, N.R. 1982. Altered myosin isozyme patterns from pressure-overloaded and thyrotoxic hypertrophied rabbit hearts. Circ. Res. 50: 846–856.

    Google Scholar 

  33. Martin, A.F.; Pagani, E.D.; and Solaro, RJ. 1982. Thyroxine-induced redistribution of isoenzymes of rabbit ventricular myosin. Circ. Res. 50: 117–124.

    PubMed  CAS  Google Scholar 

  34. Malhotra, A.; Penpargkul, S.; Fein, F.S.; Sonnenblick, E.H.; and Scheuer, J. 1981. The effect of streptozotocin-induced diabetes in rats on cardiac contractile proteins. Circ. Res. 49: 1243–1250.

    PubMed  CAS  Google Scholar 

  35. Pope, B.; Hoh, J.F.Y.; and Weeds, A. 1980. The AT Pase activity of rat cardiac myosin isoenzymes. FEBS Lett. 118: 205–208.

    Article  PubMed  CAS  Google Scholar 

  36. Schier, J.J., and Adelstein, R.S. 1982. Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults and patients with hypertrophic cardiomyopathy. J. Clin. Invest. 69: 816–825.

    Article  PubMed  CAS  Google Scholar 

  37. Wisenbaugh, T.; Allen, P.; Cooper, IV, G.; Holzgrefe, H.; Beller, G.; and Carabello, B. 1983. Contractile function, myosin AT Pase activity and isozymes in the hypertrophied pig left ventricle after chronic progressive pressure overload. Circ. Res. 53: 332–341.

    PubMed  CAS  Google Scholar 

  38. Whalen, R.G.; Sell, S.M.; Eriksson, A.; and Thornell, L.E. 1982. Myosin subunit types in skeletal and cardiac tissues and their developmental distribution. Develop. Biol. 91: 478–484.

    Article  PubMed  CAS  Google Scholar 

  39. Mercadier, J.J.; Lompré, A.M.; Wisnewsky, C.; Samuel, J.L.; Bercovici, J.; Swynghedauw, B.; and Schwartz, K. 1981. Myosin isoenzymic changes in several models of rat cardiac hypertophy. Circ. Res. 49: 525–532.

    PubMed  CAS  Google Scholar 

  40. Schiaffino, S.; Gorza, L.; Sartore, S.; Valfre, C.; and Pauletto, P. 1983. Adaptive changes in cardiac isomyosins as visualized by immunofluorescence. In Cardiac adaptation to hemodynamic overload, training and stress, ed. R.Jacob, R.W. Gülch, and G. Kissling, pp. 101–103. Darmstadt: Steinkopff Verlag.

    Google Scholar 

  41. Dalla Libera, L., and Sartore, S. 1981. Immunological and biochemical evidence for atrial-like isomyosin in thyrotoxic rabbit ventricle. Biochim. Biophys. Acta 669: 84–92.

    PubMed  Google Scholar 

  42. Gorza, L.; Sartore, S.; and Schiaffino, S. 1982. Myosin types and fiber types in cardiac muscle. II. Atrial myocardium. J. Cell. Biol. 95: 838–845.

    Article  PubMed  CAS  Google Scholar 

  43. Lompré, A.M.; Nadal-Ginard, B.; and Malidairi, V. 1984. Expression of the cardiac ventricular α and β myosin heavy-chain genes is developmentally and hormonally regulated. J. Biol. Chem. 255: 6437–6446.

    Google Scholar 

  44. Cummins, P. 1982. Transitions in human atrial and ventricular myosin light-chain isoenzymes in response to cardiac-pressure-overload-induced hypertrophy, Biochem. J. 205: 195–204.

    PubMed  CAS  Google Scholar 

  45. Gorza, L.; Pauletto, P.; Pessina, A.L.; Sartore, S.; and Schiaffino, S. 1981. Isomyosin distribution in normal and pressure overloaded rat ventricular myocardium: an immunohistochemical study. Cir. Res. 49: 1003–1009.

    CAS  Google Scholar 

  46. Rupp, H, 1981. The adaptative changes in the isoenzyme pattern of myosin from hypertrophied rat myocardium as a result of pressure overload and physical training. Basic Res. Cardiol. 76: 79–88.

    Article  PubMed  CAS  Google Scholar 

  47. Martin, A.F.; Haithcoat, J.L.; and Dowell, R.T. 1983. Redistribution of ventricular myosin isoenzymes in neonatal and adult rat heart in response to a chronic pressure overload. In Perspectives in cardiovascular research, ed. N. Alpert, Vol. 7, pp. 359–371. New York: Raven Press.

    Google Scholar 

  48. Bugaisky, L.B.; Siegel, E.L.; and Whalen, R.G. In press. Myosin isozyme changes in the heart following constriction of the aorta of 25 day old rat. FEBS Lett.

    Google Scholar 

  49. Mercadier, J.J.; Lompré, A.M.; Bouveret, P.; Samuel, J.L.; Rappaport, L.; Swynghedauw, B.; and Schwartz, K. 1983. Myosin isoenzymic distribution in hypertrophied rat and human hearts. In Cardiac adaptation to hemodynamic overload, training and stress, ed. R. Jacob, R.W. Gülch, and G. Kissling, pp. 104–112. Darmstadt: Steinkopff Verlag.

    Google Scholar 

  50. Tuchschmid, C.R.; Srihari, T.; Hirzel, H.O.; and Schaub, M.C. 1983. Structural variants of heavy chains of atrial and ventricular myosins in hypertrophied human hearts. In Cardiac adaptation to hemodynamic overload, training and stress, ed. R.Jacob, R.W. Gülch, and G. Kissling, pp. 123–128. Darmstadt: Steinkopff Verlag.

    Google Scholar 

  51. Schwartz, K.; Mercadier, J.J.; de la Bastie, D.; Bouveret, P.; Wisnewsky, C.; Schneider, J.M.; Younes, A.; and Swynghedauw, B. 1983. Left ventricular isomyosins and isoCPK in normal and hypertrophied rat and human hearts. J. Mol. Cell. Cardiol. Suppl. 2, 15: 34 (abst.).

    Google Scholar 

  52. Rupp, H.; Felbier, H.R.; and Jacob, R. 1983. Blood pressure and cardiac myosin heterogeneity in the rat as influenced by swimming and emotional excitation. In Cardiac adaptation to hemodynamic overload, training and stress, ed. R. Jacob, R.W. Giilch, and G. Kissling, pp. 274–281. Darmstadt: Steinkopff Verlag.

    Google Scholar 

  53. Mercadier, J.J.; Whalen, R.G.; and Schwartz, K. 1983. Myosin light-chain patterns of normal and hypertrophied human left ventricles. J. Mol. Cell. Cardiol. Suppl. 2, 15: 66 (abstr.).

    Google Scholar 

  54. Flink, I.L., and Morkin, E. 1977. Evidence for a new cardiac myosin species in the thyrotoxic rabbit. FEBS Lett. 81: 391–394.

    Article  PubMed  CAS  Google Scholar 

  55. Flink, I.L.; Rader, J.H.; and Morkin, E. 1979. Thyroid hormone stimulates synthesis of a cardiac myosin isozyme. J. Biol. Chem. 254: 3105–3110.

    PubMed  CAS  Google Scholar 

  56. Everett, A.W.; Chizzonite, R.A.; Clark, W.A.; and Zak, R. 1983. Relationship of changes in molecular forms of myosin heavy chains to endogenous level of thyroid hormone during postnatal growth. In Perspectives in cardiovascular research, ed. R.C. Tarazi and J.B. Dunbar, Vol. 8, pp. 83–93. New York: Raven Press.

    Google Scholar 

  57. Dillmann, W.H. 1980. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 29: 579–582.

    PubMed  CAS  Google Scholar 

  58. Dillmann, W.H.; Barrieux, A.; and Reese, G. 1984. Effect of diabetes and hypothyroidism on cardiac myosin heavy chain synthesized in-vivo and in-vitro. J. Biol. Chem. 259: 2035–2038.

    PubMed  CAS  Google Scholar 

  59. Malhotra, A.; Schaible, T.; and Scheuer, J. 1982. Abnormalities in cardiac myosin after gonadectomy (abstr.). Circulation Suppl. II, 66: 259.

    Google Scholar 

  60. Mercadier, J.J.; Lecarpentier, Y.; Delcayre, C.; Lompré, A.M.; Swynghedauw, B.; and Schwartz, K. 1982. Mecanismes biochimiques de l’adaptation myocardique dans l’hypertrophie cardiaque. Arch. Mai. Coeur. 75: 1179–1186.

    CAS  Google Scholar 

  61. Schwartz, K.; Lompré, A.M.; d’Albis, A.; Lacombe, G.; Thiem, N.V.; and Swynghedauw, B. 1980. Myosin chronic cardiac overload. In Plasticity of muscle, ed. D. Pette, pp. 569–580. Berlin, New York: Walter de Gruyter.

    Google Scholar 

  62. Loiselle, D.S.; Wendt, I.R.; and Hoh, J.F.Y. 1982. Energetic consequences of thyroid-modulated shifts in ventricular isomyosin distribution in the rat. J. Muse. Res. Cell. Motil. 3: 5–23.

    Article  CAS  Google Scholar 

  63. Samuel, J.L.; Rappaport, L.; Mercadier, J.J.; Lompré, A.M.; Sartore, S.; Triban, C.; Schiaffino, S.; Schwartz, K. 1983. Distribution of myosin isozymes within single cardiac cells. An immunohistochemical study. Circ. Res. 52: 200–209.

    PubMed  CAS  Google Scholar 

  64. Weisberg, A.; Winegrad, S.; Tucker, M.; and McClellan, G. 1982. Histochemical detection of specific isozymes of myosin in rat ventricular cells. Circ. Res. 51: 802–809.

    PubMed  CAS  Google Scholar 

  65. Winegrad, S.; McClellan, G.; Tucker, M.; and Lin, L. 1983. Cyclic AMP regulation of myosin isozymes in mammalian cardiac muscle. J. Gen. Physiol. 81: 749–765.

    Article  PubMed  CAS  Google Scholar 

  66. Hill, A.V. 1938. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. (Biol.) Series B 126: 136–195.

    Article  Google Scholar 

  67. Huxley, A.F. 1957. Muscle structure and theories of contraction. Prog., Biophys. Chem. 7: 225–318.

    Google Scholar 

  68. Sonnenblick, E.H. 1962. Force-velocity relations in mammalian heart muscle. Am. J. Physiol. 202: 931–939.

    PubMed  CAS  Google Scholar 

  69. Delcayre, C., and Swynghedauw, B. 1975. A comparative study of heart myosin. AT Pase and light subunits from different species. Pflugers Arch. 355: 39–47.

    Article  PubMed  CAS  Google Scholar 

  70. Hamrell, B.B., and Low, R.B. 1978. The relationship of mechanical Vmax to myosin AT Pase activity in rabbit and marmot ventricular muscle. Pflugers Arch. 377: 119–124.

    Article  PubMed  CAS  Google Scholar 

  71. Carey, R.A.; Bove, A.A.; Coulson, R.L.; and Spann, J.F. 1979. Correlation between cardiac muscle myosin AT Pase activity and velocity of muscle shortening. Biochem. Med. 21: 235–245.

    Article  PubMed  CAS  Google Scholar 

  72. Van Thiem, N.; Lacombe, G.; and Swynghedauw, B. 1978. Early phosphate burst of heart myosins: phylogenic variations. Eur. J. Biochem. 91: 243–248.

    Article  Google Scholar 

  73. Schwartz, K.; Lecarpentier, Y.; Martin, J.L.; Lompré, A.M.; Mercadier, J.J.; and Swynghedauw, B. 1981. Myosin isoenzymic distribution correlates with speed of myocardial contraction. J. Mol. Cell. Cardiol. 13: 1071–1075.

    Article  PubMed  CAS  Google Scholar 

  74. Ebrecht, G.; Rupp, H.; and Jacob, R. 1982. Alterations of mechanical parameters in chemically skinned preparations of rat myocardium as a function of isoenzyme pattern of myosin. Basic Res. Cardiol. 77: 220–234.

    Article  PubMed  CAS  Google Scholar 

  75. Alpert, N.R., and Mulieri, L.A. 1981. Heat, mechanics, and myosin AT Pase in normal and hypertrophied heart muscle. Fed. Proc. 41: 192–198.

    Google Scholar 

  76. Alpert, N.R., and Mulieri, L.A. 1982. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. Circ. Res. 50: 491–500.

    PubMed  CAS  Google Scholar 

  77. Holubarsch, C.; Goulette, R.P.; Litten, R.Z.; Mulieri, L.A.; and Alpert, N.R. 1983. Myokardiale Energetik und Myosin-Isoenzym-muster der Ratte. Z Kardiol. Suppl. 1, 72: 56/198.

    Google Scholar 

  78. Alpert, N.R., and Mulieri, L.A. 1983. Myocardial myosin isoenzymes and thermomechanical economy. In Perspectives in cardiovascular research, ed. R.C. Tarazi andJ.B. Dunbar, Vol. 8, pp. 157–166. New York: Raven Press.

    Google Scholar 

  79. Kissling, G.; Rupp, H.; Malloy, L.; and Jacob, R. 1982. Alterations in cardiac oxygen consumption under chronic pressure overload: significance of the isoenzyme pattern of myosin. Basic Res. Cardiol. 77: 255–269.

    Article  PubMed  CAS  Google Scholar 

  80. Swynghedauw, B., and Delcayre, 1982. Biology of cardiac overload. In Pathobiology annual, ed. H.L. Ioachim, Vol. 12, pp. 137–183. New York: Raven Press.

    Google Scholar 

  81. Goldspink, G. 1975. Biochemical energetics for fast and slow muscles. In Comparative physiology—functional aspects of structural materials, ed. L. Bolis, H.P. Maddrell, and K. Schmidt-Nielsen, pp. 173–185. Amsterdam: North Holland.

    Google Scholar 

  82. Nwoye, L.O., and Goldspink, G. 1981. Biochemical efficiency and intrinsic shortening speed in selected vertebrate fast and slow muscles. Experientia 37: 856–857.

    Article  PubMed  CAS  Google Scholar 

  83. Hoh, J.F. Y., and Egerton, L.J. 1979. Action of triiodothyronine on the synthesis of rat ventricular myosin isoenzymes. FEBS Lett. 101: 143–148.

    Article  PubMed  CAS  Google Scholar 

  84. Rupp, H.; Kissling, G.; and Jacob, R. 1983. Hormonal and hemodynamic determinants of polymorphic myosin. In Perspectives in Cardiovascular Research, ed. N.R. Alpert, Vol. 7, pp. 373–383. New York: Raven Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster

About this chapter

Cite this chapter

Schwartz, K., Mercadier, JJ. (1984). Isomyosin Shifts in Normal and Induced Cardiac Growth. In: Legato, M.J. (eds) The Developing Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3834-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3834-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3836-9

  • Online ISBN: 978-1-4613-3834-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics