Skip to main content

Ontogeny of Peripheral Blood Vessels

  • Chapter
  • 55 Accesses

Abstract

There are numerous indications that the vasculature changes considerably in both form and function during ontogenic development, strongly affecting cardiovascular responsiveness and regulation. One of the most important landmarks in growth of blood vessels may be the time of functional adrenergic innervation. Interaction between sympathetic neurons and vascular muscle cells is important, not only for the immediate regulation of vascular tone but also for the long-term interactions regulating sensitivity to vasoactive agents, membrane excitability, and growth. This chapter will review the development of vasoconstrictor function by the sympathetic nervous system and also the development of trophic interactions, but it will not address the embryonic origin of blood vessels covered in embryology textbooks and also summarized in the Handbook of Physiology [1, 2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Mierop, L.H.S. 1979. Morphological development of the heart. In Handbook of physiology, Section 2: The cardiovascular system, ed. R. M. Berne, N. Sperelakis, and S. R. Geiger, pp. 1– 28. Bethesda, MD: American Physiological Society.

    Google Scholar 

  2. Manasek, F.J. 1979. Organization, interactions, and environment of heart cells during myocardial ontogeny. In Handbook of physiology, Section 2: The cardiovascular system, ed. R.M. Berne, N. Sperelakis, and S.R. Geiger, pp. 29–42. Bethesda, MD: American Physiological Society.

    Google Scholar 

  3. Legato, M.J. 1979. Cellular mechanisms of normal growth in the mammalian heart. I. Qualitative and quantitative features of ventricular architecture in the dog from birth to five months of age. Circ. Res. 44: 250–262.

    PubMed  CAS  Google Scholar 

  4. Bevan, R.D. 1975. Effect of sympathetic denervation on smooth muscle cell proliferation in the growing rabbit ear artery. Circ. Res. 37: 14–19.

    PubMed  CAS  Google Scholar 

  5. Levi-Montalcini, R. 1975. NGF: an uncharted route. In Neurosciences: Paths of discovery, ed. F.G. Worden, J.P. Swazey, and G. Adelman, pp. 245–265. Cambridge & London: MIT.

    Google Scholar 

  6. Boatman, D.L.; Schaffer, R.A.; Dixon, R.L.; and Brody, M.J. 1965. Function of vascular smooth muscle and its sympathetic innervation in the newborn dog. J. Clin. Invest. 44: 241–246.

    Article  PubMed  CAS  Google Scholar 

  7. Mills, E., and Smith, P.G. 1983. Functional development of the cervical sympathetic pathway in the neonatal rat. Fed. Proc. 42: 1639–1642.

    PubMed  CAS  Google Scholar 

  8. Buckley, N.M.; Brazeau, P.; and Gootman, P.M. 1983. Maturation of circulatory responses to adrenergic stimuli. Fed. Proc. 42: 1643–1647.

    PubMed  CAS  Google Scholar 

  9. Aprigliano, O. 1983. Neural influences and norepinephrine sensitivity in the rat portal vein. Fed. Proc. 42: 257–262.

    PubMed  CAS  Google Scholar 

  10. Abel, P.W., and Hermsmeyer, K. 1981. Sympathetic cross-innervation of SHR and genetic controls suggests a trophic influence on vascular muscle membranes. Circ. Res. 49: 1311–1318.

    PubMed  CAS  Google Scholar 

  11. Fronek, K. 1983. Trophic effect of the sympathetic nervous system on the vascular smooth muscle. Annals of Biomedical Engineering 2: 36.

    Google Scholar 

  12. Abel, P.W.; Trapani, A.; Aprigliano, O.; and Hermsmeyer, K. 1980. Trophic effect of norepinephrine on the rat portal vein in organ culture. Circ. Res. 47: 770–775.

    PubMed  CAS  Google Scholar 

  13. Hermsmeyer, K., and Mason, R. 1982. Norepinephrine sensitivity and desensitization of cultured single vascular muscle cells. Circ. Res. 50: 627–632.

    PubMed  CAS  Google Scholar 

  14. Campbell, G.R.; Chamley-Campbell, J.; Short, N.; Robinson, R.; and Hermsmeyer, K. 1981. Effect of cross-transplantation on normotensive and spontaneously hypertensive rat arterial muscle membrane. Hypertension 3: 534–543.

    PubMed  CAS  Google Scholar 

  15. Hermsmeyer, K. 1976. Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension. Circ. Res. 38: 362–367.

    PubMed  CAS  Google Scholar 

  16. Hermsmeyer, K. 1981. Membrane potential mechanisms in experimental hypertension. In New trends in arterial hypertension, INSERM Symposium No. 17, ed. M. Worcel et al., pp. 175–187. Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  17. Hermsmeyer, K. 1982. Electrogenic ion pumps and other determinants of membrane potential in vascular muscle (the 1982 Henry Pickering Bowditch Lecture). Physiologist 25: 454–465.

    PubMed  CAS  Google Scholar 

  18. Lais, L.T.; Rios, L.L.; Boutelle, S.; DiBona, G.F.; and Brody, M.J. 1977. Arterial pressure development in neonatal and young spontaneously hypertensive rats. Blood Vessels 14: 277–284.

    PubMed  CAS  Google Scholar 

  19. Owens, G.K., and Schwartz, S.M. 1982. Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat. Circ. Res. 51: 280–289.

    PubMed  CAS  Google Scholar 

  20. Kugler, J.D., Gillette, PC.; Graham, S.P.; Garson, A., Jr.; Goldstein, M.A.; and Thompson, H.K., Jr. 1980. Effect of chemical sympathectomy on myocardial cell division in the newborn rat. Pediatr. Res. 14: 881–884.

    PubMed  CAS  Google Scholar 

  21. Worcel, M., Saiag, B.; and Chevillard, C. 1980. An unexpected mode of action for hydralazine (HYD). Trends in Pharmacol. Sci. 1: 136–138.

    Article  CAS  Google Scholar 

  22. Potter, D.D.; Furshpan, E.J.; and Landis, S.C. 1983. Transmitter status in cultured rat sympathetic neurons: plasticity and multiple function. Fed. Proc. 42: 1626–1632.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster

About this chapter

Cite this chapter

Hermsmeyer, K. (1984). Ontogeny of Peripheral Blood Vessels. In: Legato, M.J. (eds) The Developing Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3834-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3834-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3836-9

  • Online ISBN: 978-1-4613-3834-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics