Nutritional Management

  • Anders Alvestrand
  • Jonas Bergström


Maintenance of volume and composition of the body fluids within normal limits is a basic requirement for health. Water, electrolytes and non-volatile end products of metabolism are excreted by the kidneys, which control fluid and electrolyte homeostasis through various feed-back systems. The kidneys are also important as endocrine organs affecting calcium homeostasis, blood pressure regulation and erythropoiesis. In addition the kidneys catabolize a number of polypeptide hormones such as insulin, glucagon, growth hormone, parathyroid hormone, gastrin etc. (1). The term uremia which littéral means urine in the blood is used to describe a condition which develops in severe renal failure and is characterized by disturbances in water and electrolyte metabolism, toxic symptoms caused by retained metabolites, as well as secondary endocrine disturbances. However, the kidneys seem to have a considerable reserve capacity since the patient often remains free of symptoms until glomerular filtration rate is reduced to 1/3 of normal or less, and life can be maintained with only 2–3% of normal renal function, provided that conservative therapy is optimal.


Acute Renal Failure Chronic Renal Failure Hemodialysis Patient Essential Amino Acid Nitrogen Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katz AI, Emmanouel DS: Metabolism of Polypeptide Hormones by the Normal Kidney and in Uremia. Nephron 22: 69–80, 1978.PubMedCrossRefGoogle Scholar
  2. 2.
    Arieff AI, Guisado R: Effects on the central nervous sys-tem of hypematremic and hyponatremic states. Kidney Int 10: 104–116, 1976.PubMedCrossRefGoogle Scholar
  3. 3.
    Bricker NS: On the pathogenesis of the uremic state. An exposition of the ‘trade-off hypothesis’. New Engl J Med 286: 1093–1099, 1972.PubMedCrossRefGoogle Scholar
  4. 4.
    Bricker NS, Fine LG, Kaplan M, Epstein M, Bourgoignie JJ, Light A: ‘Magnification Phenomenon’ in Chronic Renal Disease. New Engl J Med 299:1287–1293, 1978.PubMedCrossRefGoogle Scholar
  5. 5.
    Diamond JR, Yobum DC: Nonoliguric Acute Renal Failure. Arch Intem Med 142: 1882–1884, 1982.CrossRefGoogle Scholar
  6. 6.
    Relman AS: The acidosis of renal disease. Am J Med 44: 706–713, 1968.PubMedCrossRefGoogle Scholar
  7. 7.
    Lemann J Jr, Litzow JR, Lennon EJ: The effects of chronic acid loads in normal man. Further evidence of the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest 45: 1608–1614, 1966.PubMedCrossRefGoogle Scholar
  8. 8.
    van Ypersele de Strihou C: Potassium homeostasis in renal failure. Kidney Int 11: 491–504, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Bergström J, Fürst P: Uraemic toxins. In: Drukker W, Parsons FM, Maher JF (eds) Replacement of Renal Function by Dialysis. Martinus Nijhoffs Publishers, The Hague, 1983, pp 354–390.CrossRefGoogle Scholar
  10. 10.
    Middle molecules in Uremia and Other Diseases, Analytical Techniques, Metabolic Toxicity and Clinical Aspects. Proc of the Symposium on Present Status and future Orientation of Middle Molecules in Uremia and Other Diseases. Avignon, France, 1980. Artif Organs 4:Suppl 4, 1981.Google Scholar
  11. 11.
    Delaporte C, Gros F, Anagnostopoulos T: Inhibitory ef fects of plasma diaysate on protein synthesis in vitro: influence of dialysis and transplantation. Am J Clin Nutr 33: 1407–1410, 1980.PubMedGoogle Scholar
  12. 12.
    Garber AJ: Skeletal muscle protein and amino acid metabolism in experimental chronic uremia in the rat. J Clin Invest 62: 623–632, 1978.PubMedCrossRefGoogle Scholar
  13. 13.
    Harter HR, Karl IE, Klahr S, Kipnis DM: Effects of reduced renal mass and dietary protein intake on amino acid release and glucose uptake by rat muscle in vitro. J Clin Invest 64: 513–523, 1979.PubMedCrossRefGoogle Scholar
  14. 14.
    DeFronzo RA, Smith D, Alvestrand A: Insulin resistance in uremia is specific for glucose metabolism. Kidney Int 23: 222, 1983.Google Scholar
  15. 15.
    Conley SB, Rose GM, Robson AM, Bier DM: Effects of dietary intake and hemodialysis on protein turnover in uremic children. Kidney Int 17: 837–846, 1980.PubMedCrossRefGoogle Scholar
  16. 16.
    DeFronzo RA, Alvestrand A, Smith D, Hendler R, Hendler E, Wahren J: Insulin resistance in Uremia. J Clin Invest 67: 563–568, 1981.PubMedCrossRefGoogle Scholar
  17. 17.
    Amold W, Holliday MA: In vitro suppression of insulin- mediated amino acid uptake in uremic skeletal muscle. Am J Clin Nutr 33: 1428–1432, 1980.Google Scholar
  18. 18.
    Kuku SF, Jaspan JB, Emmanouel DS, Zeidler A, Katz AI, Rubenstein AH: Heterogeneity of Plasma Glucagon. J Clin Invest 58: 742–750, 1976.PubMedCrossRefGoogle Scholar
  19. 19.
    Birge SJ, Haddad JB: 25-hydroxycholecalciferol stimulation of muscle metabolism. J Clin Invest 56: 1100–1107, 1975.PubMedCrossRefGoogle Scholar
  20. 20.
    Eastwood JB, Stamp TCB, de Wardener HE, Bordier PJ, Amaud CD: The effect of 25-hydroxy vitamin D3 in the osteomalacia of chronic renal failure. Clin Sci Mol Med 52: 499–508, 1977.PubMedGoogle Scholar
  21. 21.
    Gulyassy PF, Aviram A, Peters JH: Evaluation of amino acid and protein requirements in chronic uremia. Arch Intem Med 126: 855–859, 1970.CrossRefGoogle Scholar
  22. 22.
    Young GA, Parsons FM: Plasma amino acid imbalance in patients with chronic renal failure on intermittent dialysis. Clin Chim Acta 27: 491–496, 1970.PubMedCrossRefGoogle Scholar
  23. 23.
    Älvestrand A, Berptröm J, Fürst P: Plasma and muscle free amino acids in uremia: influence of nutrition with amino acids. Clin Nephrol 18: 297–305, 1982.PubMedGoogle Scholar
  24. 24.
    Young GA, Parsons FM: Impairment of phenylalanine hydroxylation in chronic renal insufficiency. Clin Sci Mol Med 48: 89–97, 1973.Google Scholar
  25. 25.
    Bergström J, Fürst P, Josephson B, Noree LO: Improvement of nitroge balance in a uremic patients by the addition of histidine to essential amino acid solutions given intravenously. Life Sci 9: part II, 787–794, 1970.CrossRefGoogle Scholar
  26. 26.
    Fürst P: 15N-studies in severe renal failure. II Evidence for the essentiality of histidine. Scand J Clin Lab Invest 30:307–312, 1972.PubMedCrossRefGoogle Scholar
  27. 27.
    Kopple JD, Swendseid ME: Evidence that histidine is an essential amino acid in normal and chronically uremic man. J Clin Invest 55: 881–891, 1975.PubMedCrossRefGoogle Scholar
  28. 28.
    Älvestrand A, Ahlberg M, Bergström J, Fürst P: Clinical results of long-term treatment with low protein diet and a new amino acid preparation in chronic uremic patients. Clin Nephrol 19: 67–73, 1983.PubMedGoogle Scholar
  29. 29.
    DeFronzo RA, Tobin JD, Rowe JW, Andres R: Glucose intolerance in uremia. Quantification of pancreatic beta cell sensitivity to glucose and tissue sensitivity to insulin. J Clin Invest 62: 425–435, 1978.PubMedCrossRefGoogle Scholar
  30. 30.
    Smith D, Defronzo RA: Insulin resistance in uremia mediated by postbinding defects. Kidney Int 22: 54–62, 1982.PubMedCrossRefGoogle Scholar
  31. 31.
    Hampers CL, Soeldner JS, Doak PB, Merrill JP: Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J Clin Invest 45: 1719–1731, 1966.PubMedCrossRefGoogle Scholar
  32. 32.
    Snyder D, Pulido LB, Kagan A: Dietary reversal of the carbohydrate intolerance in uremia. Proc EDTA 5: 205–213, 1968.Google Scholar
  33. 33.
    Swenson RS, Weisinger J, Reaven GM: Evidence that hemodialysis does not improve the glucose tolerance of patients with chronic renal failure. Metabohsm 23: 929–936, 1974.CrossRefGoogle Scholar
  34. 34.
    Attman PO, Gustavsson A: Lipid and carbohydrate meta-bolism in uremia. Influence of treatment with protein- reduced diet and essential amino-acids. Nutr Metabol 24: 261–266, 1980.CrossRefGoogle Scholar
  35. 35.
    Bilbrey GL, Faloona GR, White MG, et al: Hyperglucagonemia of renal Failure. J Clin Invest 53: 841–847, 1974.PubMedCrossRefGoogle Scholar
  36. 36.
    Sherwin RS, Basti C, Finkelstein FO, et al: Influence of uremia and hemodialysis on the turnover and metabolic effects of glucagon. J Clin Invest 57: 722–731, 1976.PubMedCrossRefGoogle Scholar
  37. 37.
    Wright AD, Lowry C, Fraser TR, et al: Serum-growth hormone and glucose tolerance in renal failure. Lancet 11: 798–801, 1968.CrossRefGoogle Scholar
  38. 38.
    Samaan N, Freeman RM: Growth hormone levels in severe renal failure. Metabolism 19: 102–113, 1970.PubMedCrossRefGoogle Scholar
  39. 39.
    Norbeck HE, Carison LA: The Uremic Dyslipoproteinemia: Its Characteristics and Relations to clinical Fac–tors. Acta Med Scand 289: 489–504, 1981.Google Scholar
  40. 40.
    Attman PO: Dietary treatment in uremia. Renal function, protein and lipid metabolism. Thesis. Näringsforskning 23: 40–59, 1979.Google Scholar
  41. 41.
    Norbeck HE, Carlson LA: Increased frequency of late prebeta lipoproteins (LP beta) in isolated serum very low density lipoproteins in uraemia. Eur J Clin Invest 10: 423–426, 1980.PubMedCrossRefGoogle Scholar
  42. 42.
    Brunner FP, Vrynger H, Chantler C, Donckerwolcke RA, Hathway RA, Jacobs C, Selwood NH, Wing AJ: Combined Report on Regular Dialysis and Transplantation in Europe IX, 1978. Proc Eur Dial Transpl Ass 16: 3–82, 1979.Google Scholar
  43. 43.
    Lindner A, Charraa B, Sherrard DJ, Scribner BH: Accel-erated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med 290: 697–701, 1974.PubMedCrossRefGoogle Scholar
  44. 44.
    Burke JF, Francos GC, Moore LL, Cho SY, Lasker N: Accelerated Atherosclerosis in Chronic-Dialysis Patients - Another Look. Nephron 21: 181–185, 1978.PubMedCrossRefGoogle Scholar
  45. 45.
    Rostand SG, Gretes JC, Kirk KA, Rutsky EA, Andreoli TE: Ischemic heart disease in patients with uremia undeirgoing maintenance hemodialysis. Kidney Int 16: 600–611, 1972.CrossRefGoogle Scholar
  46. 46.
    Nicholls AJ, Catto GRD, Edward N, Engeset J, Macleod M: Accelerated atherosclerosis in long-term dialysis and renal transplant patients: Fact or fiction? Lancet 1: 276–278, 1980.PubMedCrossRefGoogle Scholar
  47. 47.
    Vincenti F, Amend WJ, Abele J, Feduska NJ, Salvatierra O: The role of hypertension in hemodialysis-associated atherosclerosis. Am J Med 68: 363–369, 1980.PubMedCrossRefGoogle Scholar
  48. 48.
    Turgan C, Feehally J, Bennett S, Davies TJ, Walls J: Accelerated hypertriglyceridemia in patients on continuous ambualtory peritoneal dialysis-A preventable abnormality. Int J Artif Organs 4: 158–160, 1981.PubMedGoogle Scholar
  49. 49.
    Lindholm B, Karlander SG, Norbeck HE, Bergström J: Glucose and lipid metabolism in peritoneal dialysis. In LaGreca G, Biasioli S, Ronco C (eds) Peritoneal Dialysis. Wichtig Editore, Milano, 1982, pp 219–230.Google Scholar
  50. 50.
    David DS: Mineral and bone homeostasis in renal failure. In: David DS (ed) Calcium metabolism in renal failure and nephrolithiasis. John Wiley & Sons, New York, 1977, pp 1–76.Google Scholar
  51. 51.
    Slatopolsky E, Rutherford WE, Hruska K, Martin K, Klahr S: How important is phosphate in the pathogenesis of renal osteodystrophy? Arch Intern Med 138: 848–852, 1978.PubMedGoogle Scholar
  52. 52.
    DeLuca HF: The kidney as an endocrine organ involved in calcium homeostasis. Kidney Int 4: 80–88, 1973.PubMedCrossRefGoogle Scholar
  53. 53.
    Cobum JW, Hartenbower DL, Brickman AS, Massry SG, Kopple JD: Intestinal absorption of calcium, magnesium and phosphorus in chronic renal insufficiency. In: David DS (ed) Calcium metabolism in renal failure and nephrolithiasis. John Wiley & Sons, New York, 1977, pp 77–110.Google Scholar
  54. 54.
    Parfitt AM: Clinical and radiographic manifestations of renal osteodystrophy. In: David DS (ed) Calcium metabolism in renal failure and nephrolithiasis. John Wiley & Sons, New York, 1977, pp 145–196.Google Scholar
  55. 55.
    Massry SG: Is parathyroid hormone a uremic toxin? Nephron 19: 125 – 130, 1977.PubMedCrossRefGoogle Scholar
  56. 56.
    Walser M: Does dietary therapy have a role in the predialysis patient? Am J Clin nutr 33: 1629–1637, 1980.PubMedGoogle Scholar
  57. 57.
    Slatopolsky E, Bricker NS: The role of phosphorus restriction in the prevention of secondary hyperparathyroidism in chronic renal disease. Kidney Int 4: 141–145, 1973.PubMedCrossRefGoogle Scholar
  58. 58.
    Kopple JD, Mercurio K, Blumenkrantz MJ, Jones MR, Tallos J, Roberts C, Card B, Saltzman R, Casciato Da, Swendseid ME: Daily requirement for pyrodoxine supplements in chronic renal failure. Kidney Int 19: 694–704, 1981.PubMedCrossRefGoogle Scholar
  59. 59.
    Sullivan JF, Eisenstein AB: Ascorbic Acid Depletion During Hemodialysis. JAMA 220: 1697–1699, 1972.PubMedCrossRefGoogle Scholar
  60. 60.
    Kopple JD, Swendseid ME: Vitamin nutrition in patients undergoing maintenance hemodialysis. Kidney Int 7: (Supl 2): S79–84, 1975.Google Scholar
  61. 61.
    Milman N: Serum Vitamin B12 and Erythrocyte Folate in Chronic uraemia and after Renal Transplantation. Scand J Haematol 25: 151–157, 1980.PubMedCrossRefGoogle Scholar
  62. 62.
    HemmelöfF Andersen KE: Folic acid status of patients with chronic renal failure maintained by dialysis. Clin Nephrol 8: 510–513, 1977.PubMedGoogle Scholar
  63. 63.
    Bastow MD, Woods HF, Walls J: Persistent anemia associated with reduced serum vitamin B12 levels in patients undergoing regular hemodialysis therapy. Qin Nephrol 11:133–135, 1979.Google Scholar
  64. 64.
    Werb R: Vitamin A Toxicity in hemodialysis patients. Int J Artif Organs 2:178–180, 1979.PubMedGoogle Scholar
  65. 65.
    Yatzidis H, Digenis P, Fountas P: Hypervitaminosis A accompanying advanced chronic renal failure. Br Med J 3: 352–353, 1975.PubMedCrossRefGoogle Scholar
  66. 66.
    Linton AL, Clark WF, Driedger AA, Werb R, Lindsay RM: Correctable Factors Contributing to the Anemia of Dialysis Patients. Nephron 19: 95–98, 1977.PubMedCrossRefGoogle Scholar
  67. 67.
    Rosenblatt SG, Drake S, Fadem S, Welch R, Lifschitz MD: Gastointestinal Blood Loss in Patients with Chronic Renal Failure. Am J Kidney Dis 1: 232–236, 1982.PubMedGoogle Scholar
  68. 68.
    Schäfer Ai, Cheron RG, Dluhy R, Cooper B, Gleason RE, Soeldner JS, Bunn HF: Clinical consequences of acquired transfusional iron overload in adults. New Eng J Med 304: 319–324, 1981.PubMedCrossRefGoogle Scholar
  69. 69.
    Bregman H, Gelfand MC, Winchester JF, Manz HJ, Knepshield JH, Schreiner GE: Iron-Overload-associated myopathy in patients on maintenance haemodialysis: A histocompatibility-linked disorder. Lancet 11: 882–885, 92. 1980.Google Scholar
  70. 70.
    Milman N, Christensen TE, Strandberg-Pedersen N, Visfeldt J: Serum ferritin and bone marrow iron in non-dialysis, peritoneal dialysis and hemodialysis patients with chronic renal failure. Acta Med Scand 207: 201–205, 1980.PubMedCrossRefGoogle Scholar
  71. 71.
    Mahajan SK, Prasad AS, Rabbani P, Briggs WA, McDonald FD: Zinc metabolism in uremia. J Lab Clin Med 94. 94: 693–698, 1979.PubMedGoogle Scholar
  72. 72.
    Rudolph H, Alfrey AC, Smythe WR: Muscle and serum trace element profile in uremia. Trans Am Soc Artif Int Organs 19: 456–465, 1973.Google Scholar
  73. 73.
    Comelis R, Mees L, Ringoir S, Hoste J: Serum and Red Blood Cell Zn, Se, Cs and Rb in Dialysis Patients. Min ElecMetab 2:88–93, 1979.Google Scholar
  74. 74.
    Vreman HJ, Venter C, Leegwater J, Oliver C, Weiner MW: Taste, Smell and Zinc Metabolism in Patients with chronic Renal Failure. Nephron 26:163–170, 1980.Google Scholar
  75. 75.
    Antoniou LD, Sudhaker T, Shalhoub RJ, Smith JC: Reversel of uremic impotence by zinc. Lancet 11:895–898, 1977.CrossRefGoogle Scholar
  76. 76.
    Atkin-Thor E, Goddard BW, Onion J: Hypogeusia and zinc depletion in chronic dialysis patients. Am J Clin Nutr 831:1948–1951, 1978.Google Scholar
  77. 77.
    Zetin M, Stone RA: Effects of zinc in chronic hemodialysis. Clin Nephrol 13: 20–25, 1980.PubMedGoogle Scholar
  78. 78.
    Brook AC, Johnston DG, Ward MK, Watson MJ, Cook DB, Kerr DNS: Absence of a therapeutic effect of zinc in the sexual dysfunction of hemodialysed patients. Lancet 11: 618–619, 1980.CrossRefGoogle Scholar
  79. 79.
    Rose WC: The amino acid requirements of adult man. Nutr Abstr Rev 27: 631–647, 1957.Google Scholar
  80. 80.
    Hegsted DM: Variation in requirements of nutrients-ami- no acids. Proc Fed Am Socs exp Biol 22: 1424–1430, 1963.Google Scholar
  81. 81.
    Munroe HN: Amino acid requirements and metabolism. In: Wilkinson AW (ed) Parenteral nutrition. Churchill Livingstone, London, 1972, pp33. 103.Google Scholar
  82. 82.
    Herdon RF, Freeman S, Cleveland AS: Protein require-ments in chronic insufficient patients. A study of the nitrogen minimum. J Lab Clin Med 52: 235, 1958.Google Scholar
  83. 83.
    Ford J, Philips ME, Toye FE, Luck VA, Wardener HE de: Nitrogen balance in patients with chronic renal failure on diets containing varying quantities of protein. Br Med J i: 735–740, 1969.CrossRefGoogle Scholar
  84. 84.
    Fürst P, Ahlberg M, Alvestrand A, Bergström J: Principles of essential amino acid therapy in uremia. Am J Clin Nutr 31: 1744–1755, 1978.PubMedGoogle Scholar
  85. 85.
    Walser M: Nutritional management of chronic renal failure. Am J Kidney Dis 1: 261–275, 1982.PubMedGoogle Scholar
  86. 86.
    Giordano C: Use of exogenous and endogenous urea for protein synthesis in normal and uremic subjects. J Lab Clin Med 62: 231–246, 1963.PubMedGoogle Scholar
  87. 87.
    Varcoe R, Halliday D, Carson ER, Richard P, Tavill AS: Efficiency of utilization of urea nitrogen for albumin synthesis by chronically uraemic and normal man. Clin Sci Mol Med 48: 379–390, 1975.PubMedGoogle Scholar
  88. 88.
    Mitch WE, Walser M: Effect of oral neomycin and kanamycin in chronic uremic patients. II. Nitrogen balance. Kidney Int 11: 123–128, 1977.PubMedCrossRefGoogle Scholar
  89. 89.
    Giovannetti S, Maggiore Q: A low-nitrogen diet with proteins of high biological value for severe chronic uraemia. Lancet 1: 1000–1003, 1964.PubMedCrossRefGoogle Scholar
  90. 90.
    Kopple JD, Cobum JW: Metabolic studies of low protein diets in uremia. I. Nitrogen and potassium. Medicine 52: 583–595, 1973.PubMedCrossRefGoogle Scholar
  91. 91.
    Berlyne GM, Shaw AB: Giordano-Giovannetti diet in terminal renal failure. Lancet 2:7-, 1965.CrossRefGoogle Scholar
  92. 92.
    Kopple JD, Sorensen MK, Cobum JW, Gordon S, Rubini ME: Controlled comparison of 20-g and 40-g protein diets in the treatment of chronic uremia. Am J Clin Nutr 21: 553–564, 1968.PubMedGoogle Scholar
  93. 93.
    Lange K, Lonergan ET, Semar M, Sterzel RB: Transketolase inhibition as a mechanism in uremic neuropathy. In: Kluthe R, Berlyne G, Burton B (eds) Uremia. Georg Thieme Verlag, Stuttgart, 1972, pp 24–32.Google Scholar
  94. 94.
    Bergström J, Fürst P, Noree LO: Treatment of chronic uremic patients with protein-poor diet and oral supply of essential amino acids. I. Nitrogen balance studies. Clin Nephrol 3: 187–194, 1975.PubMedGoogle Scholar
  95. 95.
    Rogers QR, Chen DM, Harper AE: The Importance of dispensable amino acids for maximal growth in the rat. Proc Soc exp Biol Med 134: 517–522, 1970.PubMedGoogle Scholar
  96. 96.
    Pennisi AJ, Wang M, Kopple JD: Effects of low nitrogen diets in uremic and control rats. Proc Fed Am Socs exp Biol 35: 257–260, 1976.Google Scholar
  97. 97.
    Hyne BEB, Fowell E, Lee HA: The effect of caloric intake on nitrogen balance in chronic renal failure. Clin Sei 43: 679–688, 1972.Google Scholar
  98. 98.
    Bürge JC, Park HS, Whitlock CP, Schemmel RA: Taste acuity in patients undergoing long-term hemodialysis. Kidney Int 15: 49–53, 1979.PubMedCrossRefGoogle Scholar
  99. 99.
    Berlyne GM, Booth EM, Brewis RAL, Mallick NP, Simons PJ: A soluble glucose polymer for use in renal failure and caloric deprivation states. Lancet 1: 689–692, 1969.PubMedCrossRefGoogle Scholar
  100. 100.
    Walser M, Lund P, Ruderman NB, Coulter AW: Synthesis of essential amino acids from their alphaketo analogues by perfused rat liver and muscle. J Clin Invest 52: 2865–2877, 1973.PubMedCrossRefGoogle Scholar
  101. 101.
    Richards p. Brown CL, Houghton BJ, Thompson E: Synthesis of phenylalanine and valine by healthy and uremic men. Lancet II: 128–134, 1971.Google Scholar
  102. 102.
    Rudman D: Capacity of human subjects to utilize keto analogues of valine and phenylalanine. J Clin Invest 50: 90–96, 1971.PubMedCrossRefGoogle Scholar
  103. 103.
    Mitch WE, Walser M: Nitrogen balance in uremic subjects receiving the hydroxy-analogue of methionine and branched-chain ketoacids as substitutes for the respective amino acids. Clin Nephrol 8: 341–344, 1977.PubMedGoogle Scholar
  104. 104.
    Mitch WE, Walser M: Utilization of calcium L-Phenyllactate as a substitute for phenylalanine by uremic subjects. Metabolism 26: 1041–1046, 1977.PubMedCrossRefGoogle Scholar
  105. 105.
    Bergström J, Ahlberg M, Alvestrand A, Fürst P: Metabolic studies with keto acids in uremia. Am J Clin Nutr 31: 1761–1766, 1978.PubMedGoogle Scholar
  106. 106.
    Heidland A, Kult J, Rockel A, Heidbreder E: Evaluation of essential amino acids and keto acids in uremic patients on low-protein diet. Am J Clin Nutr 31: 1784–1792, 1978.PubMedGoogle Scholar
  107. 107.
    Alvestrand A, Ahlberg M, Bergström J, Fürst P: The effect of nutritional regimens on branched chain amino acid (BCAA) antagonism in uremia. In: Walser M, Williamson JR (eds) Metabolism and Clinical implications of Branched Chain Amino and Ketoacids. Elsevier North Holland, Amsterdam, 1981, pp 605–613.Google Scholar
  108. 108.
    Halliday D, Madigan M, Chalmers RA, Purkiss P, Ell S, Bergström J, Fürst P, Neuhauser M, Richards P: The degree of conversion of alphaketo acids to valine and phenylalanine in health and uremia. Quart J Med 50: 53–62, 1981.PubMedGoogle Scholar
  109. 109.
    Walser M: Ketoacids in the treatment of uremia. Clin Nephrol 3: 180–186, 1975.PubMedGoogle Scholar
  110. 110.
    Mitch WE, Walser M, Sapir DG: A comparison of nitrogen-sparing by leucine and its keto-analogue in fasting subjects. Clin Res 27: 373, 1979.Google Scholar
  111. 111.
    Mitch WE, Gelman B, Walser M: Hypercalcemia and hypophosphatemia in uremic patients receiving essential amino acids or N-free analogues. Kidney Int 12: 530, 1977.Google Scholar
  112. 112.
    Barsotti G, Morelli E, Guiducci A, Ciardella F, Giannoni A, Lupetti S, Giovannetti S: Reversal of Hyperparathyroidism in Severe Uremics Following Very Low-Protein and Low-phosphorus Diet. Nephron 30: 310–313, 1982.PubMedCrossRefGoogle Scholar
  113. 113.
    Mitch WE, Sapir DG: Evaluation of reduced dialysis frequency using nutritional therapy. Kidney Int 20: 122–126, 1981.PubMedCrossRefGoogle Scholar
  114. 114.
    Cotton JR, Woodard T, Carter NW, Knöchel JP: Correction of uremic cellular injury with a protein restricted, amino acid supplemented diet. Kidney Int 14: 673, 1978.Google Scholar
  115. 115.
    Kopple JD, Cobum JW: Evaluation of chronic uremia. Importance of serum urea nitrogen, serum creatinine and their ratio. JAMA 227: 41–44, 1974.PubMedCrossRefGoogle Scholar
  116. 116.
    Sargent J, Gotch F, Borah M, Piercy L, Spinozzi N, Schoenfeld P, Humphreys M: Urea kinetics: A guide to nutritional management of renal failure. Am J Clin Nutr 31: 1696–1702, 1978.PubMedGoogle Scholar
  117. 117.
    Young GA, Swanepoel CR, Croft MR, Hobson SM, Parsons FM: Anthropometry and plasma valine, amino acids, and proteins in the nutritional assessment of hemodialysis patients. Kidney Int 21: 492–499, 1982.PubMedCrossRefGoogle Scholar
  118. 118.
    Klidjian AM, Archer TJ, Foster KJ, Karran SJ: Detection of Dangerous malnutrition. J Parenteral Enteral Nutr 6: 119–121, 1982.CrossRefGoogle Scholar
  119. 119.
    Ingenbleek Y, Schrieck HG van den, Nayer P de, Visscher M de: Albumin, transferrin and the thyroxine-binding prealbumin/retinol- binding protein (TBPA-RBP) complex in assessment of malnutrition. Clin Chim Acta 63: 61–67, 1975.Google Scholar
  120. 120.
    Ritz E, Mehls O, Gilli G, Heuck CC: Protein restriction in the conservative management of uremia. Am J Clin Nutr 31: 1703–1711, 1978.PubMedGoogle Scholar
  121. 121.
    Bonomini V, Feletti C, Scolari MP, Stefoni S, Vangelista A: Atherosclerosis in uremia: a longitudinal study. Am J Clin Nutr 33: 1493–1500, 1980.PubMedGoogle Scholar
  122. 122.
    Alvestrand A, Ahlberg M, Fürst P, Bergström J: Clinical experience with amino acid and keto acid diets. Am J Clin Nutr 33: 1654–1659, 1980.PubMedGoogle Scholar
  123. 123.
    Attman PO, Gustafsson A: Lipid and carbohydrate metabolism in uremia. Eur J Clin Invest 9: 285–292, 1979.PubMedCrossRefGoogle Scholar
  124. 124.
    Attman PO, Awald J, Isaksson B: Body composition dur-ing longterm treatment of uremia with amino acid supple-mented low protein diet. Am J Clin Nutr 33: 801–810, 1980.PubMedGoogle Scholar
  125. 125.
    Bergström J, Lindholm U, Noree LO: Preservation of peripheral nerve function in severe uremia during treat-ment with low protein high calorie diet and surplus of essential amino acids. Acta Neurol Scand 51: 99–109, 1975.PubMedCrossRefGoogle Scholar
  126. 126.
    Sanfelippo ML, Swenson RS, Reaven GM: Response of plasma triglycerides to dietary change in patients on hemodialysis. Kidney Int 14: 180–186, 1978.PubMedCrossRefGoogle Scholar
  127. 127.
    Cattran DC, Steiner G, Fenton SSA, Ampil M: Dialysis hyperlipemia: response to dietary manipulations. Clin Nephrol 13: 177–182, 1980.PubMedGoogle Scholar
  128. 128.
    Tsukamoto Y, Okubo M, Yoneda T, Marumo F, Nakamura H: Effects of a Polyunsturated Fatty Acid-Rich Diet on Serum Lipids in Patients with Chronic Renal Failure. Nephron 31: 236–241, 1982.PubMedCrossRefGoogle Scholar
  129. 129.
    Goldberg AP, Hagberg JM, Delmez JA, Heath GW, Harter HR: Exercise training improves abnormal lipid and carbohydrate metabolism in hemodialysis patients. Trans Am Soc Artif Intern Organs 25: 431–437, 1979.PubMedGoogle Scholar
  130. 130.
    De Felice SL, Klein MI: Carnitine and hemodialysis - a minireview. Curr Ther Res 28: 195–198, 1980.Google Scholar
  131. 131.
    Baezato G, Mezzina C, Ciman M, Guamieri G: Myasthenia-like syndrome associated with carnitine in patients on long-term hemodialysis. Lancet 1: 1041–1042, 1979.CrossRefGoogle Scholar
  132. 132.
    Kopple JD: Nutritional Therapy in Kidney Failure. Nutr Rev 39: 193–206, 1981.PubMedCrossRefGoogle Scholar
  133. 133.
    Mahajan SK, Abbasi AA, Prasad AS, Rabbani P, Briggs WA, McDonald FD: Effect of Oral Zinc Therapy on Gonadal Function in Hemodialysis Patients. Ann Internal Med 979: 357–361, 1982.Google Scholar
  134. 134.
    Wathen RL, Keshaviah P, Cadwell K, Comty CM: The metabolic effects of hemoidialysis with and without glucose in the dialysate. Am J Clin Nutr 31: 1870–1875, 1978.PubMedGoogle Scholar
  135. 135.
    Thunberg BJ, Swamy A, Cestera RVM: Cross-sectional and longitudinal nutritional measurements in maintenance hemodialysis patients. Am J Clin Nutr 34: 2005–1012, 1981.PubMedGoogle Scholar
  136. 136.
    Piraino AJ, Firpo JJ, Powers DV: Prolonged Hyperalimentation in Catabolic Chronic Dialysis Therapy Patients. J Parent Ent Nutr 5: 463–477, 1981.CrossRefGoogle Scholar
  137. 137.
    Mattem WD, Hak U, Lamanna RW, Teasley KM, Laffell MS: Malnutrition, Altered immune function, and the Risk of Infection in Maintenance Hemodialysis Patients. Am J Kidney Dis 1: 206–218, 1982.Google Scholar
  138. 138.
    Alfred H, Kirkwood G, Kunitomo T, Williams G, Emanuel R, Lowrie E: Acute hormone changes with conventional (CD) and high flux dialysis (HFD). Trans Am Soc Artif Internal Organs 8: 37–41, 1979.Google Scholar
  139. 139.
    Kopple JD, Swendseid ME, Shinaberger JH, Umezawa CU: The free and bound amino acids removed by hemodialysis. Trans Am Soc Artif Internal Organs 19: 309–313, 1973.Google Scholar
  140. 140.
    Wolfson M, Jones MR, Kopple JD: Amino Acid Losses during hemodialysis with infusion of amino acids and glucose. Kisney Int 21: 500–506, 1982.CrossRefGoogle Scholar
  141. 141.
    Wathen RL, Keshaviah P, Cadwell K, Comty CM: The metabolic effects of hemodialysis with and without glucose in the dialysate. Am J Clin Nutr 31: 1870–1875, 1978.PubMedGoogle Scholar
  142. 142.
    Guamieri G, Faccini L, Lipartiti T, Ranieri F, Spangaro F, Giuntini D, Toigo G, Dardi F, Berquier-Vidali F, Raimondi A: Simple methods for nutritional assessment in henmodialyzed patients. Am J Clin Nutr 33: 1598–1607, 1980.Google Scholar
  143. 143.
    Blumenkrantz MJ, Kopple JD, Gutman RA, Chan YK, Barbour GL, Roberts C, Shen FH, Gandhi VC, Tucker CT, Curtis FK, Cobum JW: methods for assessing nutri tional status of patients with renal failure. Am J Clin Nutr 33: 1567–1585, 1980.Google Scholar
  144. 144.
    Comty CA: Long-term dietary management of dialysis patients. J Am Diet Assoc 54: 439–444, 1968.Google Scholar
  145. 145.
    Kopple jd, Shinaberger JH, Cobum JW, Sorensen M, Rubini ME: Optimal dietary protein treatment during chronic hemodialysis. Trans Am Soc Artif Internal Organs 15: 302–308, 1969.Google Scholar
  146. 146.
    Schaeffer G, Heinze V, Jontofsohn R, Katz N, Rippich TH, Schäfer B, Südhoff A, Zimmerman W, Kluthe R: Amino acid and protein intake in RDT patients. A nutritional and biochemical analysis. Clin Nephrol 3: 228–233, 1975.PubMedGoogle Scholar
  147. 147.
    Kluthe R, Lüttgen FM, Capetianu T, Heinze V, Katz N, Südhoff A: Protein requirements in maintenance hemodialysis. Am J Clin Nutr 31: 1812–1820, 1978.PubMedGoogle Scholar
  148. 148.
    Borah MF, Schoenfeld PY, Gotch FA, Sargent FJA, Wolfson M, Humphreys MH: Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int 14: 491–500, 1978.PubMedCrossRefGoogle Scholar
  149. 149.
    Heidland A, Kuh J: Long-term effect of essential amino acids supplementation in patients on regular dialysis treatment. Clin Nephrol 3: 234–239, 1975.PubMedGoogle Scholar
  150. 150.
    Philips ME, Havard J, Howard JP: Oral essential amino acid supplementation in patients on maintenance hemodialysis. Clin Nephrol 9: 241–248, 1978.Google Scholar
  151. 151.
    Ulm A, Neuhäuser M, Leber HW: Influence of essential amino acids and keto acids on protein metabolism and anemia of patients on intermittent hemodialysis. Am J Clin Nutr 31: 1827–1830, 1978.PubMedGoogle Scholar
  152. 152.
    Alvestrand A, Bergström J, Fürst P: Intracellular free amino acids in patients treated with regular haemodialysis (HD). Proc Eur Dial Transplant Assoc 16: 129–134, 1979.PubMedGoogle Scholar
  153. 153.
    Alvestrand A, FürstP, Bergström J: Intracellular amino acids in uremia. Kidney Int 24: (suppl 16) S9–S16, 1983.Google Scholar
  154. 154.
    Wathen RL, Keshaviah P, Hommeyer P, CadwellBA, Comty CM: The metabolic effects of hemodialysis with and without glucose in the dialysate. Am J Clin Nutr 31: 1870–1875, 1978.Google Scholar
  155. 155.
    Ward RA, Shiriow MJ, Hayes JM, Chapman GV, farrell PC: Protein catabolism during hemodialysis. Am J Clin Nutr 32: 2443–2449, 1979.PubMedGoogle Scholar
  156. 156.
    Farrell PC, Hone PW: Dialysis-induced catabolism. Am J Clin Nutr 33: 1417–1422, 1980.PubMedGoogle Scholar
  157. 157.
    Anderson RJ, Schrier RW: Clinical spectrum of oliguric and nonoliguric acute renal failure. In: Brenner BM, Stein JH (eds) Contemporary Issues in Nephrology, Vol 6. Acute Renal Failure. Churchill Livingstone Inc, New York, 1980, pp 1–16.Google Scholar
  158. 158.
    Feinstein EI, Blumenkrantz MJ, Healy M, Koffler A, Silberman H, Massry SG, Kopple JD: Clinical and Metabolic Responses to Parenteral nutrition in Acute Renal Failure. Medicine 60: 124–137, 1981.PubMedCrossRefGoogle Scholar
  159. 159.
    Kleinlaiecht D, Jüngers P, Chanard J, Barbanel C, Ganeval D: Uremic and non-Uremic complications in acute renal failure: Evaluation of early and frequent dialysis on prognosis. Kidney Int 1: 190–196, 1972.CrossRefGoogle Scholar
  160. 160.
    Toback FG, Havener LJ, Dodd RC, Sparp BH: Phospholipic metabolism during renal regeneration after acute tubular necrosis. Am J Physiol 232: 216–222, 1977.PubMedGoogle Scholar
  161. 161.
    Lee HA, Sharpstone P, Ames AC: Parenteral nutrition in renal failure. Postgrad Med J 43: 81–91, 1967.PubMedCrossRefGoogle Scholar
  162. 162.
    Abel RM, Abbott WM, Fischer JE: Acute renal failure: treatment without dialysis by total parenteral nutrition. Arch Surg 103: 513–514, 1971.PubMedGoogle Scholar
  163. 163.
    Abel RM, Beck CH, Abbott WM, Ryan JA, Bamett GO, Fisher JE: Improved survival from acute renal failure after treatment with intravenous essential L-Amino acids and glucose. New Engi J Med 288: 695–699, 1973.CrossRefGoogle Scholar
  164. 164.
    Oken DE, Sprinkel FM, Kirschbaum BB, Landwehr DM: Amino Acid therapy in the treatment of experimental acute renal failure in the rat. Kidney Int 17: 14–23, 1980.PubMedCrossRefGoogle Scholar
  165. 165.
    Blumenkmtz MJ, Kopple JD, Koffler A, Kamdar AK, Healy MD, Feinstein EI, Massry SG: Total parenteral nutrition in the management of acute renal failure. Am J Clin Nutr 31: 1831–1840, 1978.Google Scholar
  166. 166.
    Blackburn GL, Etter G, Mackenzie T: Criteria for choosing amino acid therapy in acute renal failure. Am J Clin Nutr 31: 1841–1853, 1978.PubMedGoogle Scholar
  167. 167.
    Berlyne GM,Bazzard FJ, Booth EM, Janabi K Shaw AB: The dietary treatment of acute renal failure. Quart J Med 3636: 59–83, 1967.Google Scholar
  168. 168.
    Richards P: Nutritional potential of nitrogen recycling in man. Am J Clin Nutr 25: 615–625, 1972.PubMedGoogle Scholar
  169. 169.
    Freund H, Atamian S, Fischer JZ: Comparative study of parenteral nutrition in renal failure using essential and nonessential amino acid containg solutions. Surgery, Gynecology & Obstetrics 151: 652–656, 1980.Google Scholar
  170. 170.
    Lee HA: The nutritional management of renal diseases. In: Dickerson WT, Lee HA (eds) Nutrition in the clinical management of disease. Edward Arnold, London, 1978, pp 210–235.Google Scholar
  171. 171.
    Askanazi J, Carpentier YA, Elwyn H: Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg 191: 40–46, 1980.PubMedCrossRefGoogle Scholar
  172. 172.
    Chan MK, Verghese Z, Persaud JW, Baillod RA, Moorhead JF: Fat clearance before and after heparin in chronic renal failure - haemodialysis reduces postheparin fractional clearance rate of Intralipid. Clin Chim Acta 108: 95–111, 1980.PubMedCrossRefGoogle Scholar
  173. 173.
    Russel GI, Davies TG, Walls J: Evaluation of the intra-venous fat tolerance test in chronic renal disease. Clin Nephrol 13: 282–286, 1980.Google Scholar
  174. 174.
    Druml W, Widhalm K, Laggner A, Kleinberger G, Lenz K: Fat Elimination in Acute Renal Failure. Clin Nutr 1: 109–115, 1982.PubMedCrossRefGoogle Scholar
  175. 175.
    Hallberg D: Elimination of exogenous lipids from the blood stream. Acta Physiol Scand, suppl 254, 1965.Google Scholar
  176. 176.
    Robin AP, Nordenström J, Askanazi J, Elwyn DH, Carpentier YA, Kinney JM: Plasma clearance of fat emulsions in trauma and sepsis: Use of a three-stage lipid clearance test. J Parenteral Enteral Nutr 4: 505–510, 1980.CrossRefGoogle Scholar
  177. 177.
    Mitch WE, Walser M, Buffington GA, Lemann J Jr: A simple method of estimating progression of chronic renal failure. Lancet 11: 1326–1328, 1976.CrossRefGoogle Scholar
  178. 178.
    Ibels LS, Alfrey Ac, Hant L, Huffer WE: Preservation of function in experimental renal disease by dietary restric-tion of phosphate. New Engl J Med 298: 122–126, 1978.Google Scholar
  179. 179.
    Mascio G, Oldrizzi L, Tesitore N, D’ngelo A, Yalvo E, Lupo A, Loschiavo C, Fabris A, Gammaro L, Rugiu C, Panzetta G: Effects of dietary protein and phosphorus restriction on the progression of early renal failure. Kidney Int 22: 371–376, 1982.CrossRefGoogle Scholar
  180. 180.
    Kluthe R, Oeschlen D, Quirin H, Jedinsky HJ: Six years experience with a special low-protein diet. In: Kluthe R, Berlyne G, Burton B (eds) Uremia, international conference on pathogenesis and therapy. Georg Thieme Verlag, Stuttgart, 1971, pp 150-.Google Scholar
  181. 181.
    Barsotti G, Guiducci A, Ciardella F, Giovannetti S: Effoects on Renal Function of a Low-Nitrogen Diet Supple-mented with Essential Amino Acids and Ketoanalogues and of Hemodialysis and Free Protein Supply in Patients with Chronic Renal Failure. Nephron 27: 113–117, 1981.PubMedCrossRefGoogle Scholar
  182. 182.
    Alvestrand A, Ahlberg M, Bergström J: Retardation of the progression of renal insufficiency in patients treated with low-protein diet. Kidney Int 24: (suppl 16) S267–S271, 1983.Google Scholar
  183. 183.
    Barrientos A, Arteaga J, Rodicio JL, Alvarez Ude F, Alcazar JM, Ruilope LM: Role of Control of Phosphate in the Progression of Chronic Renal Failure. Min Elec Metab 7:127–133, 1982.Google Scholar
  184. 184.
    Hostetter TH, Rennke HG, Brenner BM: Compensatory of Phosphate in the Progression of Chronic Renal Failure. Min Elec Metab 7: 127–133, 1982.Google Scholar
  185. 185.
    Pullman TN’ Alvings AS, Dem RJ, Landowne M: The Progression of Chronic Renal Failure. Min Elec Metab influence of dietary protein intake on specific renal function in normal men. J Lab Clin Med 44: 320–332, 1954.PubMedGoogle Scholar
  186. 186.
    Moorhead JF, Chan MK, El-Nahas M, Varghese Z: Lipid Renal hemodynemic injury: A Final Common Pathway of nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 11: 1309–1311, 1982.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston / The Hague / Dordrecht / Lancaster 1984

Authors and Affiliations

  • Anders Alvestrand
  • Jonas Bergström

There are no affiliations available

Personalised recommendations