Skip to main content

Therapy of Renal Disorders in Sickle Hemoglobinemia

  • Chapter
Therapy of Renal Diseases and Related Disorders
  • 130 Accesses

Abstract

Sickle hemoglobinemia, a term which refers to the presence of sickle hemoglobin (Hb-S) in either the heterozygous or homozygous form, has been associated with numerous and widely varying forms of disordered renal function, the majority of which are ultimately a consequence of the sickling process. In the presence of hypoxia, acidosis, or hyperosmolality (which causes red cells to shrink, thereby increasing intracellular hemoglobin concentration), the rate of gelation and tactoid formation increases and red cells become sickled (1–5). When this morphologic change occurs in the capillary bed there is an increase in blood viscosity. Resistance to blood flow is thereby increased, passage of red cells through capillaries is further delayed, and more deoxygenation and sickling ensue. This process, which has been described as ‘a vicious cycle of erythrostasis’(6), can eventually lead to ischemia and infarction of tissue. In the relatively hypoxic, acidic, and hyperosmolar environment of the renal medulla, such a process will eventually produce obliteration of the vasa recta, focal scarring, medullary interstitial fibrosis, papillary necrosis, and tubular atrophy which are the pathologic hallmarks of sickle-cell nephropathy (7–11). It is this widespread pathologic disruption of renal medullary anatomic integrity that accounts for most of the renal disorders that afflict patients with sickle hemoglobinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murayama M: Molecular mechanism of red cell ‘sickling’. Science 153: 145–149, 1966.

    Article  PubMed  CAS  Google Scholar 

  2. Greenberg MS, Kass EH, Castle WB: Studies on the destruction of red blood cells. XII. Factors influencing the role of S hemoglobin in the pathologic physiology of sickle cell anemia and related disorders. J Clin Invest 36: 833–843, 1957.

    Article  PubMed  CAS  Google Scholar 

  3. May A, Huehns ER: The concentration dependence of the oxygen affinity of haemoglobin S. Br J Haematol 30: 317–335, 1975.

    Article  CAS  Google Scholar 

  4. Bookchin RM, Balazs T, Landau LC: Determinants of red cell sickling: effects of varying pH and of increasing intracellular hemoglobin concentration by osmotic shrinkage. J Lab Clin Med 87: 597–616, 1976.

    PubMed  CAS  Google Scholar 

  5. Perillie PE, Epstein FH: Sickling phenomenon produced by hypertonic solutions: a possible explanation for the hyposthenuria of sicklemia. J Clin Invest 42: 570–580, 1963.

    Article  PubMed  CAS  Google Scholar 

  6. Ham TH, Castle WB: Relation of increased hypotonic fragility and of erythrostasis to the mechanism of hemolysis in certain anemias. Trans Assoc Am Physicians 55: 127–132, 1940.

    CAS  Google Scholar 

  7. Statius van Eps LW, Pinedo-Veels C, de Vries GH, de Koning J: Nature of concentrating defect in sickle-cell nephropathy: microradioangiographic studies. Lancet 1: 450–452, 1970

    Article  PubMed  CAS  Google Scholar 

  8. Sydenstricked VP, Mulherin WA, Houseal RW: Sickle cell anemia. Report of two cases in children, with necropsy in one case. Am J Dis Child 26:132–154, 1923.

    Google Scholar 

  9. Mostofi FK, Vorder Bruegge CF, Diggs LW: Lesions in kidneys removed for unilateral hematuria in sickle-cell disease. Arch Pathol 63: 336–351, 1957.

    CAS  Google Scholar 

  10. Pitcock JA, Muirhead EE, Hatch FE, Johnson JG, Kelly BJ: Early renal changes in sickle cell anemia. Arch Pathol 90: 403–410, 1970.

    PubMed  CAS  Google Scholar 

  11. Buckalew VM Jr, Someren A: Renal manifestations of sickle cell disease. Arch Intern Med 133: 660–669, 1974.

    Article  PubMed  Google Scholar 

  12. Herrick JB: Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch Intern Med 6: 517–521, 1910.

    Google Scholar 

  13. Keitel HG, Thompson D, Itano HA: Hyposthenuria in sickle cell anemia: a reversible renal defect. J Clin Invest 35: 998–1007, 1956.

    Article  PubMed  CAS  Google Scholar 

  14. Schlitt L, Keitel HG: Pathogenesis of hyposthenuria in persons with sickle cell anemia or the sickle cell trait. Pediatr 26: 249–254, 1960.

    CAS  Google Scholar 

  15. Statius van Eps LW, Schouten H, ter Haar Romeny- Wachter CC, la Porte-Wijsman LW: The relation between age and renal concentrating capacity in sickle cell disease and hemoglobin C disease. Clin Chem Acta 27: 501–511, 1970.

    Google Scholar 

  16. Levitt MF, Hauser AD, Levy MS, Polimeros D.: The renal concentrating defect in sickle cell disease. Am J Med 29: 611–622, 1960.

    Article  PubMed  CAS  Google Scholar 

  17. Whitten CF, Younes AA: A comparative study of renal concentrating ability in children with sickle cell anemia and in normal children. J Lab Med 55: 400–415, 1960.

    CAS  Google Scholar 

  18. Hatch FE, Culbertson JW, Diggs LW: Nature of the renal concentrating defect in sickle cell disease. J Clin Invest 46: 336–45, 1967.

    Article  PubMed  CAS  Google Scholar 

  19. Lief PD, Sullivan A, Goldberg M: Physiological contributions of thin and thick loops of Henle to the renal concentrating mechanism. J Clin Invest 48: 52a, 1969.

    Google Scholar 

  20. Statins van Eps LW, Schouten H, la Porte-Wijsman LW, Struyker Boudier AM: The influence of red blood cell transfusions on the hyposthenuria and renal hemodynamics of sickle cell anemia. Clin Chim Acta 17: 449–461, 1967.

    Article  Google Scholar 

  21. Abel MS, Brown CR: Sickle cell disease with severe hematuria simulating renal neoplasm. JAMA 136: 624–625, 1948.

    CAS  Google Scholar 

  22. Goodwin WE, Alston EF, Semans JH: Hematuria and sickle cell disease: unexplained, gross unilateral, renal hematuria in negroes, coincident with the blood sickling trait. J Urol 63: 79–96, 1950.

    PubMed  CAS  Google Scholar 

  23. Lucas WM, Bullock WH: Hematuria in sickle cell disease. J Urol 83: 733–741, 1960.

    PubMed  CAS  Google Scholar 

  24. Sharpe AR Jr, Fox PG Jr, Dodson AI Sr: Unilateral renal hematuria associated with sickle cell C disease and sickle cell trait: Study of five patients and review of literature. J Urol 81: 780–783, 1959.

    PubMed  Google Scholar 

  25. Moffat DB, Fourman J: The vascular pattern of the rat kidney. J Anat 97: 543–553, 1963.

    PubMed  CAS  Google Scholar 

  26. Thorbum GD, Kopald HH, Herd JA, Hollenberg M, O’Morchoe CCC, Barger AC: Intrarenal distribution of nutrient blood flow determined with Krypton85 in the unanesthetized dog. Circ Res 13: 290–307, 1963.

    Google Scholar 

  27. Bernstein J, Whitten CF: A histological appraisal of the kidney in sickle cell anemia. Arch Pathol 70: 407–418, 1960.

    PubMed  CAS  Google Scholar 

  28. Pitcock JA, Muirhead EE, Hatch FE, Johnson JG, Kelly BJ: Early renal changes in sickle cell anemia. Arch Pathol 90: 403–410, 1970.

    PubMed  CAS  Google Scholar 

  29. Harrow BR, Sloane JA, Liebman NC: Roentgenologic demonstration of renal papillary necrosis in sickle-cell trait. N Engl J Med 268: 969–976, 1963.

    Article  PubMed  CAS  Google Scholar 

  30. Eckert DE, Jonutis AJ, Davidson AJ: The incidence and manifestations of Urographie papillary abnormalities in patients with S hemoglobinopathies. Radiol 113: 59–63, 1974.

    CAS  Google Scholar 

  31. Pandya KK, Koshy M, Brown N, Presman D. Renal papillary necrosis in sickle cell hemoglobinopathies. J Urol 115: 497–501, 1976.

    PubMed  CAS  Google Scholar 

  32. Margulies SI, Minkin SD: Sickle cell disease. The roentgenologic manifestations of urinary tract abnormalities in adults. Amer J Roentgen Rad Ther and Nucl Med 107: 702–710, 1969.

    CAS  Google Scholar 

  33. Khademi M, Marquis JR: Renal angiography in sickle-cell disease. A preliminary report correlating the angiographic and Urographie changes in sickle-cell nephropathy. Radiol 107: 41–46, 1973.

    CAS  Google Scholar 

  34. Karayalcin G, Dorfman J, Rosner F, Aballi AJ: Radiological changes in 127 patients with sickle cell anemia. Am J Med Sei 271: 132–144, 1976.

    Article  CAS  Google Scholar 

  35. Kimmelstiel P: Vascular occlusion and ischemic infarction in sickle cell disease. Am J Med Sei 216: 11–19, 1948.

    Article  Google Scholar 

  36. Femi-Pearse D, Odunjo EO: Renal cortical infarcts in sickle-cell trait. Br Med J 3: 34, 1968.

    Article  PubMed  CAS  Google Scholar 

  37. Miller WA, Peck D, Lowman RM: Perirenal hematoma in association with renal infarction in sickle cell trait. Radiol 92: 351–352, 1969.

    CAS  Google Scholar 

  38. Sickles EA, Korobkin M: Perirenal hematoma as a complication of renal infarction in sickle-cell trait. Am J Roentgenol 122: 800–803, 1974.

    CAS  Google Scholar 

  39. Whalley PJ, Martin FG, Pritchard JA: Sickle cell trait and urinary tract infection during pregnancy. JAMA 189: 903–906, 1964.

    PubMed  CAS  Google Scholar 

  40. Parhak UN, Tang K, Williams LL, Stuart KL. Bacteriuria of pregnancy: results of treatment. J Inf Dis 120: 91–95, 1969.

    Article  Google Scholar 

  41. Amin UF, Ragbeer MS: The prevalence of pyelonephritis among sicklers and nonsicklers in an autopsy population. West Ind Med J 21: 166, 1972.

    Google Scholar 

  42. Whalley PJ, Pritchard JA, Richards JR Jr. Sickle cell trait and pregnancy. JAMA 186: 1132–1135, 1963.

    PubMed  CAS  Google Scholar 

  43. Ho Ping Kong H, Alleyne GAO: Defect in urinary acidification in adults with sickle-cell anemia. Lancet 11: 954–955, 1968.

    Article  Google Scholar 

  44. Ho Ping Kong H, Alleyne GAO: Studies on acid excretion in adults with sickle-cell anemia. ClinSci 41: 505–518, 1971.

    Google Scholar 

  45. Goossens JP, Statins van Eps LW, Schouten H, Giterson AL: Incomplete renal tubular acidosis in sickle cell disease. Clin Chim Acta 41: 149–156, 1972.

    Article  PubMed  CAS  Google Scholar 

  46. Oster JR, Lee SM, Lespier LE, Pellegrini EL, Vaamonde CA: Renal acidification in sickle cell trait. Arch Intern Med 136: 30–35, 1976.

    Article  PubMed  CAS  Google Scholar 

  47. DeFronzo RA, Taufield PA, Black H, McPhedran P, Cooke CR: Impaired renal tubular potassium secretion in sickle disease.. Ann Intern Med 90: 310–316, 1979.

    PubMed  CAS  Google Scholar 

  48. Ho Ping Kong H, Alleyna GAO: Acid-Base status of adults with sickle-cell anemia. Br Med J 3: 271–273, 1969.

    Article  Google Scholar 

  49. Battle D, Itsarayoungyven K, Arruda JAL, Kurtzman NA: Hyperkalemic hyperchloremic metabolic acidosis in sickle cell hemoglobinopathies. Amer J Med 72: 188–192, 1982.

    Article  Google Scholar 

  50. Rosansky SJ, Kennedy M: Sickle cell trait with episodic acute renal failure and Type IV renal tubular acidosis (letter). Ann Intern Med 93: 643, 1980.

    PubMed  CAS  Google Scholar 

  51. Finkelstein FO, Haylett JP: Role of medullary structures in the fimctional adaptation of renal insufficiency. Kidney Int 6: 419–425, 1974.

    Article  PubMed  CAS  Google Scholar 

  52. Gold MS, Williams JC, Spivack M, Grann V: Sickle cell anemia and hyperuricemia. JAMA 206: 1572–1573, 1968.

    Article  PubMed  CAS  Google Scholar 

  53. Diamond H: Renal handling of uric acid in sickle cell anemia. Adv Exp Med Biol 41B: 759–762, 1973.

    Google Scholar 

  54. Diamond HS, Meisel A, Sharon E, Holden D, Cacatian A: Hyperuricosuria and increased tubular secretion of urate in sickle cell anemia. Am J Med 59: 796–802, 1975.

    Article  PubMed  CAS  Google Scholar 

  55. Etteldorf JN, Tuttle AH, Clayton GW: Renal function studies in pediatrics. 1. Renal hemodynamics in children with sickle cell anemia. Am J Dis Child 83: 185–191, 1952.

    CAS  Google Scholar 

  56. Diamond H, Meisel A, Holden D, Sharon E, Cacatian A, Virdi R: Hyperuricemia in Sickle Cell Anemia. In: Hercules JI, Schecter AN, Eaton WA, Jackson RE (eds) Proceedings, First National Symposium on Sickle Cell Anemia. Bethesda, Maryland, Department of Health, Education, and Welfare, Publication No. 75–723, 1974, p 371.

    Google Scholar 

  57. de Jong PE, de Jong-van den Berg LTW, Statins van Eps LW: The tubular reabsorption of phosphate in sickle-cell nephropathy. Clin Sci Mol Med 55: 429–434, 1978.

    PubMed  Google Scholar 

  58. Hatch FE Jr, Azar SH, Ainsworth TE, Nardo JM, Culbertson JW: Renal circulatory studies in young adults with sickle cell anemia. J Lab Clin Med 76: 632–640, 1970.

    PubMed  Google Scholar 

  59. Etteldorf JN, Smith JD, Tuttle AH, Diggs LW: Renal hemodynamic studies in adults with sickle cell anemia. Am J Med 18: 243–248, 1955.

    Article  PubMed  CAS  Google Scholar 

  60. Henderson AB: Sickle cell anemia. Clinical study of fifty- four cases. Am J Med 9: 757–765, 1950.

    Article  PubMed  CAS  Google Scholar 

  61. Berman LB, Schreiner GE: Clinical and histologic spectrumof the nephrotic syndrome. Am J Med 24: 249–267, 1958.

    Article  PubMed  CAS  Google Scholar 

  62. Berman LB, Tublin I: The nephropathies of sickle-cell disease. Arch Intern Med 103: 602–606, 1959.

    CAS  Google Scholar 

  63. McCoy RC: Ultrastructural alterations in the kidney of patients with sickle cell disease and the nephrotic syndrome. Lab Invest 21: 85–95, 1969.

    PubMed  CAS  Google Scholar 

  64. Miller RE, Hartley MW, Clark EC, Lupton CH Jr: Sickle cell nephropathy. Alab J Med Sci 1: 233–238, 1964.

    CAS  Google Scholar 

  65. Sweeney MJ, Dobbins WT, Etteldorf JN: Renal disease with elements of the nephrotic syndrome associated with sickle cell anemia. A report of 2 cases. J Pediatr 60: 42–51, 1962.

    Article  Google Scholar 

  66. Elfenbein IB, Patchefsky A, Schwartz W, Weinstein AG: Pathology of the glomerulus in sickle cell anemia with and without nephrotic syndrome. Am J Pathol 77: 357–376, 1974.

    PubMed  CAS  Google Scholar 

  67. Walker BR, Alexander F, Birdsall TR, Warren RL: Glomerular lesions in sickle cell nephropathy. JAMA 215: 437–440, 1971.

    Article  PubMed  CAS  Google Scholar 

  68. Pardo V, Straus J, Kramer H, Ozawa T, Mcintosh RM: Nephropathy associated with sickle cell anemia: an autologous immune complex nephritis. II. Clinicopathologic study of seven patients. Am J Med 59: 650–659, 1975.

    Article  PubMed  CAS  Google Scholar 

  69. Strom T, Muehrcke RC, Smith RD. Sickle cell anemia with the nephrotic syndrome and renal vein obstruction. Arch Intern Med 129: 104–108, 1972.

    Article  PubMed  CAS  Google Scholar 

  70. Nicholson GD, Amin UF, Brooks SEH, Alleyne GAO: End-stage renal failure in sickle cell trait. West Ind Med J 28: 235–239, 1979.

    CAS  Google Scholar 

  71. Strauss J, Koss M, Griswold W, Chemack W, Pardo V, Mcintosh RM: Cryoprecipitable immune complexes, nephropathy, and sickle-cell disease (letter). Ann Intern Med 81: 114–115, 1974.

    PubMed  CAS  Google Scholar 

  72. Strauss J, Pardo V, Koss MN, Griswold W, Mcintosh RM: Nephropathy associated with sickle cell anemia: an autologous immune complex nephritis. I Studies on nature of glomerular-bound antiobody and antigen identification in a patient with sickle cell disease and immune deposit glomerulonephritis. Am J Med 58: 382–387, 1975.

    Article  PubMed  CAS  Google Scholar 

  73. Ozawa T, Mass MF, Guggenheim S, Strauss J, Mcintosh RM: Autologous immune complex nephritis associated with sickle cell trait: Diagnosis of the haemoglobinopathy after renal structural and immunological studies. Br Med J 1: 369–71, 1976.

    Article  PubMed  CAS  Google Scholar 

  74. Ellis JT: Glomerular lesions and the nephrotic syndrome in rabbits given saccharated iron oxide intravenously. J Exp Med 103: 127–144, 1956.

    Article  PubMed  CAS  Google Scholar 

  75. Ellis JT: Glomerular lesions in rabbits with experimentally induced proteinuria as disclosed by electron microscopy. Am J Pathol 34: 559–560, 1958.

    Google Scholar 

  76. Friedman EA, Sreepada Rao TK, Sprung CL, Smith A, Manis T, Bellevue R, Butt KMH, Levere RD, Holden DM: Uremia in sickle-cell anemia treated by maintenance hemodialysis. N Engl Med 291: 431–435, 1974.

    Article  CAS  Google Scholar 

  77. Powers DR: Natural history of sickle cell disease - the first ten years. Semin Hemat 12: 267–285, 1975.

    Google Scholar 

  78. Gerry JL Jr, Bulkley BH, Hutchins GM: Clinicopathologic analysis of cardiac dysfunction in 52 patients with sickle cell anemia. Am J Cardiol 42: 211–216, 1978.

    Article  PubMed  CAS  Google Scholar 

  79. Koppes GM, Daly JJ, Coltman CA Jr, Butkus DE: Exertion-induced rhabdomyolysis with acute renal failure and disseminated intravascular coagulation in sickle cell trait. Am J Med 63: 313–317, 1977.

    Article  PubMed  CAS  Google Scholar 

  80. Evans PV, Symmes AT: Bone marrow infarction with fat embolism and nephrosis in sickle cell disease. J Indiana Med Assoc 50: 1101–1105, 1957.

    CAS  Google Scholar 

  81. Motulsky AG: Frequency of sickling disorders in U.S. blacks. N Engl J Med 288: 31–33, 1973.

    Article  PubMed  CAS  Google Scholar 

  82. Rosa RM, Bierer BE, Thomas R, Stoff JS, Kruskall M, Robinson S, Bunn HF, Epstein FH: A study of induced hyponatremia in the prevention and treatment of sickle-cell crisis. N Engl J Med 303: 1138–1143, 1980.

    Article  PubMed  CAS  Google Scholar 

  83. Knöchel JP: Hematuria in sickle cell trait: the effect of intravenous administration of distilled water, urinary alkalinization, and diuresis. Arch Intern Med 123: 160–165, 1969.

    Article  PubMed  Google Scholar 

  84. Immergut MA, Stevenson T: The use of epsilon amino caproic acid in the control of hematuria associated with hemoglobinopathies. J Urol 93: 110–111, 1965.

    PubMed  CAS  Google Scholar 

  85. Sweeney WM: Aminocaproic acid, inhibitor of fibrinolysis. Am J Med Sci 249: 576–589, 1965.

    Article  PubMed  CAS  Google Scholar 

  86. Brody JI, Levison SP, Jung CJ: Sickle cell trait and hematuria associated with von Willebrand syndromes. Ann Intern Med 86: 529–533, 1977.

    PubMed  CAS  Google Scholar 

  87. Weinger RS, Benson GS, Villarreal S: Gross Hematuria associated with sickle cell trait and von Willebrand’s disease. J Urol 122: 136–137, 1979.

    PubMed  CAS  Google Scholar 

  88. Spector D, Zachary JB, Sterioff S, Millan J: Painful crises following renal transplantation in sickle cell anemia. Am J Med 64: 835–839, 1979.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Boston / The Hague / Dordrecht / Lancaster

About this chapter

Cite this chapter

Rosa, R.M. (1984). Therapy of Renal Disorders in Sickle Hemoglobinemia. In: Suki, W.N., Massry, S.G. (eds) Therapy of Renal Diseases and Related Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3807-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3807-9_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3809-3

  • Online ISBN: 978-1-4613-3807-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics