Skip to main content

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((SAMC,volume 29))

Abstract

Shear bands, or regions of localized plastic flow crossing many grains, are not uncommon during the deformation processing of metals. They may occur under nominally isothermal conditions (tooling and workpiece at the same initial temperature) as well as non-isothermal conditions (tooling and workpiece at different temperatures). Under isothermal conditions, the localization of plastic flow is a function of the geometry involved in the metalworking operation, the deformation rate, and material properties such as the work-hardening or flow softening rate of the material and its strain rate sensitivity. For non-isothermal metalworking operations, these as well as other process and material parameters controlling temperature, and hence flow stress and strain, gradients must be considered to predict the occurrence of shear bands. Methods of predicting the occurrence and severity of shear bands are presented. The power of the analytical tools are demonstrated with results from studies of the hot forging behavior of several titanium alloys. Other observations of flow localization in a hot-work tool steel, a uranium alloy, and a superalloy are used to illustrate the generality of the concepts presented. In addition, shear band phenomena in metalcutting operations are reviewed in the context of the metalworking studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. A. Backofen, Deformation Processing, Addison-Wesley, Reading, MA. (1967).

    Google Scholar 

  2. R. Hill, “On Discontinuous Plastic States with Special Reference to Localized Necking in Thin Sheets”, J. Mech. Phys. Solids, 1, 19 (1952).

    Article  MathSciNet  ADS  Google Scholar 

  3. H. W. Swift, “Plastic Instability under Plane Stress”, J. Mech. Phys. Solids, 1, 1 (1952).

    Article  ADS  Google Scholar 

  4. Z. Marciniak and K. Kuczynski, “Limit Strains in the Process of Stretch Forming Sheet Metal”, Inter. J. Mech. Sci., 9., 609 (1967).

    Article  Google Scholar 

  5. S. P. Keeler, “Forming Limit Criteria – Sheets”, in Advances in Deformation Processing, J. J. Burke and V. Weiss, eds., Plenum Press, New York (1978).

    Google Scholar 

  6. P. W. Lee and H. Kuhn, “Fracture in Cold Upset Forging - A Criterion and Model”, Met. Trans., 4, 969 (1973).

    Article  Google Scholar 

  7. R. C. Koeller and R. Raj, “Diffusional Relaxation of Stress Concentration at Second Phase Particles”, Acta Met., 26, 1551 (1978).

    Article  Google Scholar 

  8. A. L. Hoffmanner, “ The Use of Workability Test Results to Predict Processing Limits”, in Metal Forming - Interrelation Between Theory and Practice, A. L. Hoffmanner, ed., Plenum Press, New York (1971).

    Google Scholar 

  9. B. Avitzur, Metal Forming: Processes and Analysis, McGraw-Hill, New York (1968).

    Google Scholar 

  10. T. Miki, T. Tamano, and S. Yanagimoto, “Factors Causing Internal Cracks in Multistage Extrusion”, in Proc. Sixth North American Metalworking Research Conference, R. S. Hahn and W. B. Rice, eds., Society of Manufacturing Engineers, Dearborn, MI. (1978).

    Google Scholar 

  11. K. Brown, “Role of Deformation and Shear Banding in the Stability of the Rolling Textures of Aluminum and Al-0.8% Mg Alloy”, J. Inst. Metals, 100, 341 (1972).

    Google Scholar 

  12. H. C. Rogers, “Adiabatic Plastic Deformation”, Ann. Rev. Mat. Sci., 9, 283 (1979).

    Article  ADS  Google Scholar 

  13. P. S. Mathur and W. A. Backofen, “Mechanical Contributions to the Plane-Strain Deformation and Recrystallization Textures of Aluminum-Killed Steel”, Met. Trans., 4, 643 (1973).

    Article  Google Scholar 

  14. S. C. Jain and S. Kobayashi, “Deformation and Fracture of an Aluminum Alloy in Plane-Strain Sidepressing”, Technical Report AFML-TR-70–90, University of California, Berkeley, CA. (July, 1970).

    Google Scholar 

  15. S. Kobayashi, C. H. Lee, S. Sohrabpour, F. Kanacri, and L. R. Beck, “Study of Deformation and Defects Occurrence in Advanced Forging Techniques”, Technical Report AFML-TR-72–3, University of California, Berkeley, CA. (March, 1972).

    Google Scholar 

  16. W. Johnson and P. B. Mellor, Engineering Plasticity, Van Nostrand Rheinhold Company, London (1973).

    Google Scholar 

  17. V. Osina, “Forming of Metals at High Rates and Energies”, Metal Treatment, 33, 193 (May, 1966).

    Google Scholar 

  18. S. L. Semiatin and G. D. Lahoti, “Deformation and Unstable Flow in Hot Forging of Ti-6Al-2Sn-4Zr-2Mo-0. lSi”, Met. Trans. A, 12A, 1705 (1981).

    Article  Google Scholar 

  19. S. L. Semiatin and G. D. Lahoti, “Deformation and Unstable Flow in Hot Torsion of Ti-6Al-2Sn-4Zr-2Mo-0.lSi”, Met. Trans. A, 12A, 1719 (1981).

    Article  Google Scholar 

  20. S. L. Semiatin and G. D. Lahoti, “The Occurrence of Shear Bands in Isothermal, Hot Forging”, Met Trans. A, 13A, 275 (1982).

    Article  Google Scholar 

  21. I. L. Dillamore, J. G. Roberts, and A. C. Bush, “Occurrence of Shear Bands in Heavily Rolled Cubic Metals”, Metal Sci., 13, 73 (1979).

    Article  Google Scholar 

  22. J. J. Jonas and M. J. Luton, “Flow Softening at Elevated Temperatures”, in Advances in Deformation Processing, J. J. Burke and V. Weiss, eds., Plenum Press, New York (1978).

    Google Scholar 

  23. R. F. Recht, “Catastrophic Thermoplastic Shear”, J. Appl. Mech., Trans. ASME, 3IE, 189 (1964).

    Article  Google Scholar 

  24. R. S. Culver, “Thermal Instability Strain in Dynamic Plastic Deformation”, in Metallurgical Effects at High Strain Rates, R. W. Rhode, et al., eds., Plunum Press, New York (1973).

    Google Scholar 

  25. U. S. Lindholm, A. Nagy, G. R. Johnson, and J. M. Hoegfeldt, “Large Strain, High Strain Rate Testing of Copper”, J. Eng. Mat. Techn., Trans. ASME, 102, 376 (1980).

    Article  Google Scholar 

  26. M. R. Staker, “The Relation Between Adiabatic Shear Instability Strain and Material Properties”, Acta Met., 29, 683 (1981).

    Article  Google Scholar 

  27. G. B. Olson, J. F. Mescall, and M. Azrin, “Adiabatic Deformation and Strain Localization”, in Shock Waves and High-Strain-Rate Phenomena in Metals, M. A. Meyers and L. E. Murr, eds., Plenum Press, New York (1981).

    Google Scholar 

  28. S. L. Semiatin and G. D. Lahoti, “The Occurrence of Shear Bands in Non-Isothermal, Hot Forging”, Met. Trans. A (in press).

    Google Scholar 

  29. J. J. Jonas, R. A. Holt, and C. E. Coleman, “Plastic Stability in Tension and Compression”, Acta Met., 24, 911 (1976).

    Article  Google Scholar 

  30. P. Dadras and J. F. Thomas, Jr., “Compressive Plastic Instability and Flow Localization in Ti-6242”, Res. Mechanica Letters, 1., 97 (1981).

    Google Scholar 

  31. S. L. Semiatin, G. D. Lahoti, and T. Altan, “Determination and Analysis of Flow Stress Data for Ti-6242 at Hot Working Temperatures”, in Process Modeling - Fundamentals and Applications to Metals, T. Altan, H. Burte, H. Gegel, and A. Male, eds., American Society for Metals, Metals Park, OH. (1980).

    Google Scholar 

  32. J. L. Robbins, O. C. Shepard, and O. D. Sherby, “Accelerated Spheroidization of Eutectoid Steels by Concurrent Deformation”, J. Iron Steel Inst., 202, 804 (1964).

    Google Scholar 

  33. I. A. Martorell, “Effects of Isothermal Forging Conditions on the Properties and Microstructures of Ti-10V-2Fe-3Al”, Technical Report AFML-TR-78–114, Air Force Materials Laboratory, Air Force Wright Aeronautical Laboratories, AFSC, Wright-Patterson Air Force Base, OH. (December, 1978).

    Google Scholar 

  34. S. L. Semiatin, Battelle’s Columbus Laboratories, Columbus, OH., unpublished Ti-10–2-3 data (1982).

    Google Scholar 

  35. S. M. Doraivelu, “Studies on the Influence of Temperature and Mean Strain Rate on the Flow Stress of Alloy Steels”, Ph.D. Thesis, Department of Metallurgy, Indian Institute of Technology, Madras, India (February, 1979).

    Google Scholar 

  36. S. L. Semiatin and A. L. Hoffmanner, Battelle’s Columbus Laboratories, Columbus, OH., unpublished U-0.75Ti data (1979).

    Google Scholar 

  37. H. Meyer-Nolkemper, “Flow Curves of Metallic Materials”, Report No. 4, Hannover Institute of Manufacturing Research, Hannover, Germany (1978).

    Google Scholar 

  38. S. I. Oh, “Finite Element Analysis of Metal Forming Processes with Arbitrarily Shaped Dies”, Inter. J. Mech. Sci., 24 (1982), in press.

    Google Scholar 

  39. G. D. Lahoti and T. Altan, “Research to Develop Process Models for Producing a Dual Property Titanium Alloy Compressor Disk”, Technical Report AFWAL-TR-80–4162, Battelle’s Columbus Laboratories, Columbus, OH. (October, 1980).

    Google Scholar 

  40. T. Altan, F. W. Boulger, J. R. Becker, N. Akgerman, and H. J. Henning, Forging Equipment, Materials and Practices, Handbook MCIC-HB-03, Metals and Ceramics Information Center, Battelle’s Columbus Laboratories, Columbus, OH. (October, 1973).

    Google Scholar 

  41. M. E. Merchant, “Mechanics of the Metal Cutting Process”, J. Appl. Phys., 16, 267 and 318 (1945).

    Google Scholar 

  42. R. Komanduri and B. F. von Turkovich, “New Observations on the Mechanism of Chip Formation when Machining Titanium Alloys”, Wear, 69, 179 (1981).

    Article  Google Scholar 

  43. R. Komanduri, T. Schroeder, J. Hazra, B. F. von Turkovich, and D. G. Flom, “On the Catastrophic Shear Instability in High-Speed Machining of an AISI 4340 Steel”, J. Eng. for Ind., Trans. ASME, 104, 121 (1982).

    Article  Google Scholar 

  44. J. C. Lemaire and W. A. Backofen, “Adiabatic Instability in the Orthogonal Cutting of Steel”, Met. Trans., 3, 477 (1972).

    Article  Google Scholar 

  45. E. G. Loewen and M. C. Shaw, “On the Analysis of Cutting-Tool Temperatures”, Trans. ASME, 76, 217 (1954).

    Google Scholar 

  46. J. H. Weiner, “Shear-Plane Temperature Distribution in Orthogonal Cutting”, Trans. ASME,77, 1331 (1955).

    Google Scholar 

  47. B. T. Chao and K. J. Trigger, “The Significance of the Thermal Number in Metal Machining”, Trans. ASME, 75, 109 (1953).

    Google Scholar 

  48. G. Boothroyd, “Temperatures in Orthogonal Metal Cutting”, Proc. Inst. Mech. Engrs., 177, 789 (1963).

    Article  Google Scholar 

  49. Y. S. Touloukian, Thermophysical Properties of High Temperature Solid Materials, Volume 3: Ferrous Alloys, Macmillan Company, New York (1967).

    Google Scholar 

  50. T. Lyman, Metals Handbook, Vol. 1: Properties and Selection of Metals, Eighth Edition, American Society for Metals, Metals Park, OH. (1961).

    Google Scholar 

  51. T. Nicholas, “Tensile Testing at High Rates of Strain”, Experimental Mechanics, 21, 77 (May, 1981).

    Article  Google Scholar 

  52. T. B. Cox and J. R. Low, Jr., “An Investigation of the Plastic Fracture of High Strength Steels”, NASA Technical Report No. 5 under Research Grant NGR 39–087-003, Carnegie-Mellon University,Pittsburgh, PA. (May, 1973).

    Google Scholar 

  53. Anon., Aerospace Structural Metals Handbook, Mechanical Properties Data Center, Battelle’s Columbus Laboratories, Columbus, OH., data for AISI 4340, Code 1206 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Semiatin, S.L., Lahoti, G.D., Oh, S.I. (1983). The Occurrence of Shear Bands in Metalworking. In: Mescall, J., Weiss, V. (eds) Material Behavior Under High Stress and Ultrahigh Loading Rates. Sagamore Army Materials Research Conference Proceedings, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3787-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3787-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3789-8

  • Online ISBN: 978-1-4613-3787-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics