Materials Response to Large Plastic Deformation

  • M. G. Stout
  • S. S. Hecker
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 29)

Abstract

Many important practical applications of metals require a knowledge of the plastic response at large deformations and at high strain rates. For example, metal forming processes and impact or penetration problems combine the effects of large strain, high rate and temperature. Accurate modeling of such processes requires a good constitutive description of material behavior. However, controlled laboratory experiments at large strains are difficult because most involve large geometry changes accompanied by either deformation gradients (such as barreling in compression) or plastic instability (such as necking in tension). High rate deformation adds the complication of an uncontrolled temperature rise. In the strain rate regime of 1 to 103sec-1, deformation may be neither completely isothermal nor adiabatic, but a combination.

Keywords

Nickel Phosphorus Martensite Ductility Cold Work 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gil Sevillano, P. van Houtte, and E. Aernoudt, Large Strain Work Hardening and Textures, Prog. Mater. Sci., 25, pp. 69–412 (1980).CrossRefGoogle Scholar
  2. 2.
    S. S. Hecker, M. G. Stout, and D. T. Eash, Experiments in Plastic Deformation at Finite Strains, Proc. of Workshop on “Plasticity of Metals at Finite Strains: Theory, Experiment and Computation,held at Stanford University, CA, June 29, 30 and July 1, 1981.Google Scholar
  3. 3.
    C. S. Hartley, and D. A. Jenkins, Tensile Testing at Constant True Strain Rates, in:“Proceedings of 6th International Conference on Experimental Stress Analysis”, Munich, W. Germany, pp. 379–383 Sept. 18–22 (1978).Google Scholar
  4. 4.
    C. S. Hartley, D. A. Jenkins, and J-J. Lee, Strain Depend-ence of Strain-Rate Sensitivity in:“Proceedings of 5th International Conference on Strength of Metals and Alloys”, P. Haasen, V. Gerold, and G. Kostorz, eds. Pergamon Press, pp. 523–528 (1980).Google Scholar
  5. 5.
    Z. Marciniak, and K. Kuczynski, Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci.9, pp. 609–620 (1967).CrossRefGoogle Scholar
  6. 6.
    S. P. Keeler, and W. A. Backofen, Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches, Trans. ASM, 56, pp. 25–48 (1963).Google Scholar
  7. 7.
    M. Azrin, and W. A. Backofen, The Deformation and Failure of Biaxially Stretched Sheet, Met. Trans., 1, pp. 2857–2856 (1970).Google Scholar
  8. 8.
    A. K. Ghosh, and W. A. Backofen, Strain Hardening and Instability in Biaxially Stretched Sheets, Met. Trans., 4, pp. 1113–1123 (1973).CrossRefGoogle Scholar
  9. 9.
    A. J. Ranta-Eskola, Use of the Hydraulic Bulge Test in Biaxial Tensile Testing, Mech. Sci., 21, pp. 457–465 (1979).CrossRefGoogle Scholar
  10. 10.
    R. Bell, J. L. Duncan, and I. H. Wilson, A Sheet-Bulging Machine with Closed Loop Control, J. Strain Anal., 2, pp. 246–253 (1967).CrossRefGoogle Scholar
  11. 11.
    M. G. Stout, and S. S. Hecker, Comparison of Plastic Instability in Sheet and Tubular Specimens of 70–30 Brass, presented at Fall TMS/AIME Meeting, Louisville, Ky Oct. 13, 1981. Abstract in J. Metals, 33, p. 21 (1981).Google Scholar
  12. 12.
    A. Nadai in: “Theory of Flow and Fracture”, 2nd ed., McGraw Hill Book Company Inc., 1, p. 349 (1950).Google Scholar
  13. 13.
    D. S. Fields, Jr., and W. A. Backofen, Determination of Strain-Hardening Characteristics by Torsion Testing, Proceedings ASTM, 57, pp. 1259–1272 (1957)Google Scholar
  14. 14.
    G. R. Canova, S. Shrivastava, J. J. Jonas, and C. G’Sell, The Use of Torsion Testing to Assess Material Formabi- lity, Prepared for presentation at the ASTM Symposium “Formability-2000,Chicago, 111. (1980).Google Scholar
  15. 15.
    F. A. Hodierne, A. Torsion Test for Use in Metalworking Studies, J. Inst. Metals, 91, pp. 267–273, 1963.Google Scholar
  16. 16.
    S. S. Hecker, D. L. Rohr, and R. M. Aikin, Unpublished work Los Alamos National Laboratory (1978).Google Scholar
  17. 17.
    P. E. Armstrong, J. E. Hockett, and O. D. Sherby, LargeStrain Multidirectional Deformation of 1100 Aluminum at 300 K, J. Mech. Phys. Sol., 30, pp. 37–58 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    S. K. Varma, and B. G. LeFevre, Large Wire Drawing Plastic Deformation in Aluminum and Its Dilute Alloys, Met. Trans. A, 11A, pp. 935–942 (1980).Google Scholar
  19. 19.
    D. Kalish and B. G. LeFevre, Subgrain Strengthening of Aluminum Conductor Wires, Met. Trans. A, 6A, pp. 1319–1324 (1975).CrossRefGoogle Scholar
  20. 20.
    H. Luthy, A. K. Miller, and O. D. Sherby, The Stress and Temperature Dependence of Steady-State Flow at Intermediate Temperatures for Pure Polycrstalline Aluminum, Acta Met., 28, pp. 169–17 (1980).CrossRefGoogle Scholar
  21. 21.
    J. Nuttall, and J. Nutting, Structure and Properties of Heavily Cold-Worked fee Metals and Alloys, Metal Sci., 12, pp. 430–437, 1978.Google Scholar
  22. 22.
    B. Nourbaksh and J. Nutting, The High Strain Deformation of of an Aluminum -4% Copper Alloy in the Supersaturated and Aged Conditions, Acta Met., 28, pp. 357–365, 1980.CrossRefGoogle Scholar
  23. 23.
    D. J. Lloyd, and D. Kenny, The Structure and Properties of Heavily Cold Worked Aluminum Alloys, Prepublication paper from Aluminum Company of Canada, Ltd. Research Center, Kingston, Ontario, Canada.Google Scholar
  24. 24.
    D. J. Lloyd, Deformation of Fine-Grained Aluminum Alloys, Metal Sci., 14, pp. 193–198 (1980).Google Scholar
  25. 25.
    G. I. Taylor, and H. Quinney, Proceedings of the Royal Society of London, 143, p. 307 (1934).ADSCrossRefGoogle Scholar
  26. 26.
    O. D. Sherby, and C. M. Young, Some Factors Influencing the Strain Rate-Temperature Dependence of the Flow Stress in Polycrystalline Solids, in: “Rate Processes in Plastic Deformation of Materials”, J. C. M. Li, and A. K. Mukherjee eds., ASM, pp. 497–541 (1975).Google Scholar
  27. 27.
    J. H. Cairns, J. Clough, M. A. P. Dewey, and J. Nutting, The Structure and Mechanical Properties of Heavily Deformed Copper, J. Inst. Metals, 99, pp. 93–97 (1971).Google Scholar
  28. 28.
    W. G. Truckner, and D. E. Mikkola, Strengthening of Copper by Dislocation Substructures, Met. Trans. A, 8A, pp. 45–49, (1977).CrossRefGoogle Scholar
  29. 29.
    P. E. Armstrong, Los Alamos National Laboratory, (1979), unpublished work.Google Scholar
  30. 30.
    W. H. Zimmer, S. S. Hecker, L. E. Murr, and D. L. Rohr, Large-Strain Plastic Deformation of Commercially-pure Nickel, accepted for publication in Metal Sci.(1980).Google Scholar
  31. 31.
    A. K. Ghosh, Plastic Flow Properties in Relation to Local ized Necking in Sheets, in:“Mechanics of Sheet Metal Forming-Material Behavior and Deformation Analysis”, D. P. Koistinen, and N-M. Wang, eds., pp. 287–312, Plenum Press (1978).Google Scholar
  32. 32.
    R. H. Wagoner, Plastic Behavior of 70–30 Brass Sheet, Met. Trans. A, 13A, pp. 1491–1500 (1982).CrossRefGoogle Scholar
  33. 33.
    C. M. Young, L. J. Anderson, and O. D. Sherby, On the Steady State Flow Stress of Iron at Low Temperatures and Large Strains, Met. Trans., 5, pp. 519–520 (1974).CrossRefGoogle Scholar
  34. 34.
    A. Razavi, and G. Langford, Strain Hardening of Iron: Axisymmetric vs. Plane Strain Elongation, in:“Proceedings of 5th International Conference on Strength of Metals and Alloys”, P. Haasen, V. Gerold, and G. Kostorz, eds., pp. 831–836, Pergamon Press (1980).Google Scholar
  35. 35.
    E. Aernoudt, and J. Gil Sevillano, Influence of the Mode of Deformation on the Hardening of Ferritic and Pearlitic Carbon Steels at Large Strains, J. Iron and Steel Inst., 211, pp. 718–725 (1973).Google Scholar
  36. 36.
    J. Gil Sevillano, and E. Aernoudt, On the Influence of the Mode of Deformation on the Hardening of Iron at Low Temperature and Large Strains, Met. Trans. A, 6A, pp. 2163–2164 (1975).CrossRefGoogle Scholar
  37. 37.
    C. M. Young, L. J. Anderson, O. D. Sherby, reply to On the Influence of the Mode of Deformation on the Hardening of Iron at Low Temperature and Large Strain,” Met. Trans. A, 6A, pp. 2164–2165 (1975).CrossRefGoogle Scholar
  38. 38.
    R. L. Aghan, and J. Nutting, Structure and Properties of Free-Cutting Steels After Deformation to High Strains, Metals Tech., 8, pp. 41–45 (1981).Google Scholar
  39. 39.
    R. L. Aghan, and J. Nutting, Structure and Properties of Low-Carbon Steel After Deformation to High Strains, Metal Sci., 14, pp. 233–237 (1980).CrossRefGoogle Scholar
  40. 40.
    J. Weertman and S. S. Hecker, Theory for Saturation Stress Difference in Torsion versus Other Types of Deformation at Low Temperatures, submitted to J. Mech. Mater.(1982).Google Scholar
  41. 41.
    H. Mecking and A. Grinberg, Discussion on the Development of a Stage of Steady-State Flow at Large Strains, in: “Proceedings of 5th International Conference on Strength of Metals and Alloys”, P. Haasen, V. Gerold, and G. Kostorz, eds., pp. 289–294, Pergamon Press, (1980).Google Scholar
  42. 42.
    J. J. Jonas, G. R. Canova, S. C. Shrivastava and N. Christodoulou, Sources of the Discrepancy Between the Flow Curves Determined in Torsion and in Axisymmetric Tension and Compression Testing, Proc. of Workshop on “Plasticity of Metals at Finite Strains: Theory, Experiment and Computation,” held at Stanford University, CA, June 29, 30 and July 1, 1981.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • M. G. Stout
    • 1
  • S. S. Hecker
    • 1
  1. 1.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations