Skip to main content

High Rate Deformation in the Field of a Crack

  • Chapter
  • 284 Accesses

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((SAMC,volume 29))

Abstract

As part of a study of the crack arrest capabilities of tough steels[1], efforts are underway to simulate rapid crack extension and arrest in elastic-plastic finite element models. As a first step, stationary cracks in compact tension specimens have been modelled and the effects of loading rate, strain rate sensitivity and inertia on JI have been examined. The aim of this work is to examine those features of the plastic zone influential in determining the toughness, namely, the size of the process zone, and the crack tip opening displacement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. T. Hahn, and C. A. Rubin, Analysis of Crack Arrest Toughness Measurement Procedures for Ship Hull Design, Vanderbilt University Proposal to Office of Naval Research, Nashville (1982).

    Google Scholar 

  2. N. Levy, P. V. Marcal, W. J. Ostergren, and J. R. Rice, Small Scale Yielding Near a Crack in Plane Strain: A Finite Element Analysis, Int. J. of Frac. Mech., 7:143 (1971).

    Google Scholar 

  3. J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. of AppL. tech., 35:379 (1968).

    Article  Google Scholar 

  4. P. C. Paris, Fracture Mechanics in the Elastic-Plastic Regimes in: “Flaw Growth and Fracture, ASTM STP 631”, American Society for Testing and Materials, Philadelphia (1977).

    Google Scholar 

  5. C. F. Shih, W. R. Andrews, M. D. German, R. H. VanStone and J. P. D. Wilkinson, “Methodology for Plastic Fracture, EPRI Contract RP 601–2, Combined Seventh and Eighth Quarterly Report”, General Electric, Schenectady, N.Y. (1978).

    Google Scholar 

  6. W. Ramberg and W. R. Osgood, NACA TN 902 (1943).

    Google Scholar 

  7. J. W. Hutchinson, Singular Behaviour at the End of a Tensile Crack in a Hardening Material, J. tech. Phys. Solids, 16:13 (1968).

    Article  ADS  MATH  Google Scholar 

  8. J. R. Rice and G. F. Rosengren, Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material, J. tech. Phys. Solids, 16:1 (1968).

    Article  ADS  MATH  Google Scholar 

  9. C. F. Shih, “Elastic Plastic Analysis of Combined Mbde Crack Problems”, Ph.D. Thesis, Harvard University (1973).

    Google Scholar 

  10. V. Kumar, M. D. German, and C. F. Shih, “An Engineering Approach for Elastic-Plastic Fracture Analysis, EPRI NP-1931”, Electric Power Research Institute, Palo Alto, Ca. (1981).

    Google Scholar 

  11. R. M. McMeeteeking, “Finite Deformation Analysis of Crack Tip Openings in Elastic-Plastic Materials and Implications for Fracture Initiation”, Brown University Report COO-3084/44, Providence, R.I. (1976).

    Google Scholar 

  12. W. L. Server, Static and Dynamic Fibrous Initiation Toughness Results for Nine Pressure Vessel Materials, in: “Elastic- Plastic Fracture, ASTM SIP 668”, American Society for Testing and Materials, Philadelphia (1979).

    Google Scholar 

  13. W. L. Server, W. Oldfield, and R. A. Wullaert, “Experimental and Statistical Requirements for Developing a Weil-Defined k IR Curve”, EPRI NP-372, Electric Power Research Institute (1977).

    Google Scholar 

  14. M. L. Wilson, R. H. Hawley, and J. Duffy, The Effect of Loading Rate and Temperature on Fracture Initiation in 1020 Hot- Rolled Steel, Eng. Frac. tech., 13:371 (1980).

    Article  Google Scholar 

  15. L. S. Costin, The Effect of Loading Rate and Temperature on the Initiation of Fracture in a Mid Rate-Sensitive Steel, J. Eng. tet. Tech., 101: 258 (1979).

    Google Scholar 

  16. J. Klepaczko, Application of the Split Hopkinson Pressure Bar to Fracture Dynamics, Inst. Phys. Conf., 47:201 (1979).

    Google Scholar 

  17. M. F. Kanninen, E. F. Rybicki, R. B. Stonesifer, D. Broek, A. R. Rosenfield, C. W. Marschall, and G. T. Hahn, Elastic-Plastic Fracture Mechanics for Two-Dimensional Stable Crack Growth and Instability Problems, in: “Elastic-Plastic Fracture, ASTM STP 668”, American Society for Testing And Materials, Philadelphia (1979).

    Google Scholar 

  18. C. F. Shih, H. G. deLorenzi, and W. R. Andrews, Studies on Crack Initiation and Stable Crack Growth, in: “Elastic-Plastic Fracture, ASTM STP 668”, American Society for Testing and Materials, Philadelphia, (1979).

    Google Scholar 

  19. H. G. deLorenzi, and C. F. Shih, Int. J. of Frac. tech., 13:507 (1977).

    Google Scholar 

  20. R. Hoff and T. P. Byrne, “Residual Stress Analysis - A Compari son of Finite Element Results with Closed-Form Solutions”, Ontario Hydro Research Div. Report 81–232-K, Toronto, Ont. (1981).

    Google Scholar 

  21. R. S. Barsoum, Int. J. Num. teth. Eng., 11:85 (1977).

    Article  MATH  Google Scholar 

  22. E. P. Sorensen, A Numerical Investigation of Plane Strain Stable Crack Growth Under Small-Scale Yielding Conditions, in: “Elastic-Plastic Fracture, ASTM STP 668”, American Society for Testing and Materials, Philadelphia, (1979).

    Google Scholar 

  23. R. O. Ritchie, W. L. Server, and R. A. Wullaert, Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and Upper Shelf Toughness in Nuclear Pressure Vessel Steels, Met. Trans. A, 10A:1557 (1979).

    Article  Google Scholar 

  24. L. E. Milvern, Experimental Studies of Strain Rate Effects and Plastic Annealed Aluminum, in: “Proc. AS ME Coll. on Behavior of Materials under Dynamic Loading”,:81 (1965).

    Google Scholar 

  25. W. R. Andrews and C. F. Shih, Thickness and Side Groove Effects on J- and 6-Resistance Curves for A533-B Steel at 93°C, in: “Elastic-Plastic Fracture, ASTM STP 668”, American Society for Testing and Materials, Philadelphia, (1979).

    Google Scholar 

  26. J. R. Rice and M. A. Johnson, in: “Inelastic Behavior of Solids”, Ed. by M. F. Kanninen, W. F. Adler, A. R. Rosenfield, and R. I. Jaffee, McGraw-Hill, New York,:641 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Hoff, R., Rubin, C.A., Hahn, G.T. (1983). High Rate Deformation in the Field of a Crack. In: Mescall, J., Weiss, V. (eds) Material Behavior Under High Stress and Ultrahigh Loading Rates. Sagamore Army Materials Research Conference Proceedings, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3787-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3787-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3789-8

  • Online ISBN: 978-1-4613-3787-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics