Antibody-Hapten Binding Kinetics, Conformational Transitions and Domains Interactions

  • Israel Pecht


Upon binding antigen, gross changes primarily in the spatial relation of the Fab domains relative to that of the Fc are expected to occur in the antibody structure 1,2. The question whether conformational changes are caused in the combining site has been of great concern in the context of understanding the mode of effector function activation mechanism3–5. Therefore, the effect induced in antibodies by binding their haptens or even larger parts of their respective antigens, has been examined by a wide range physical and chemical methods3–5. The direct structural studies by crystallography failed to detect differences between the free combining sites and their complexes with haptens in the two cases examined to date6–7. In contrast several spectroscopic and other physical methods provided clear evidence for structural changes induced by hapten binding8–10. In the following the results of the time resolved analysis of antibody-hapten reaction will be described in detail. The kinetic studies of these reactions provided a very detailed insight into the elementary steps of hapten recognition by the antibody combining site. Furthermore, conclusive evidence for a conformational change induced upon hapten binding emerged from these investigations11–14.


Light Chain Conformational Transition Chemical Relaxation Hapten Recognition Longitudinal Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.C. Valentine and N.M. Green, Electron Microscopy of an Antibody-Hapten Complex, J. Mol. Biol. 27:615 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Feinstein and E.A. Munn, Conformation of the Free and Antigenbound IgM Antibody MOlecules, Nature, 224:1307 (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    R.E. Cathou and K.J. Dorrington, The Conformation, Interaction, and Biological Roles of Immunoglobulin Subunits, in: “Subunits in Biological Systems,” S.N. Timasheff and G.D. Fasman, eds., Part C, pp. 91–224. Decker, N.Y. (1975).Google Scholar
  4. 4.
    H. Metzger, Effect of Antigen Binding on the Properties of Antibody, Adv. Immunol. 18:169 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Metzger, The Effect of Antigen on Antibodies: Recent Studies, Contemp. Topics Molec. Immunol. 7:119 (1978).Google Scholar
  6. 6.
    D.M. Segal, E.A. Padlan, G.M. Cohen, S. Rudikoff, M. Potter, and D.R. Davies, The Three-Dimensional Structure of a Phosphorylcholine-Binding Mouse Immunoglobulin Fab and the Nature of the Antigen Binding Site, Proc.Natl.Acad.Sci. U.S.A. 71:4298 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    R.J. Poljak, Correlations Between Three-Dimensional Structure and Function of Immunoglobulins, CRC Crit.Rev.Biochem. 4:45 (1978).CrossRefGoogle Scholar
  8. 8.
    D.A. Holowka, A.D. Strasberg, J.W. Kimball, J.W.E. Haber, and R.E. Cathou, Changes in Intrinsic Circular Dichroism of Several Homogeneous Anti-Type III Pneumococcal Antibodies on Binding of a Small Hapten, Proc.Natl.Acad.Sci. U.S.A. 69:3399 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Schlessinger, Z.Z. Steinberg, D. Givol, J. Hochman, and I. Pecht, Antigen-induced Conformational Changes in Antibodies and their Fab Fragments Studied by Circular Polarization of Fluorescence, Proc.Natl.Acad.Sci. U.S.A. 72:2775 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    L.A. Tumerman, R.S. Nezlin, and V.D. Zagyansky, Increase of the Rotational Relaxation Time of Antibody Molecule After Complex Formation with Dansyl-Hapten, FEBS Lett. 19:290 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    D. Lancet, and I. Pecht, Kinetic Evidence for Hapten-induced Conformational Transition in Immunoglobulin MOPC 460, Proc. Natl.Acad.Sci. U.S.A. 73:3549 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Vuk-Pavlovic, Y. Blatt, C.P.J. Glaudemans, and D. Lancet, Hapten-Linked Conformational Equilibria in Immunoglobulins XRPC-24 and J-539 Observed by Chemical Relaxation, Biophys. J. 24:161 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Zidovetzki, Y. Blatt, C.P.J. Glaudemans, B.N. Manjula, and I. Pecht, A Common Mechanism of Hapten Binding to Immunoglobulins and Their Heterologous Chain Recombinants, Biochemistry 19:2790 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Zidovetzki, Y. Blatt, and I. Pecht, Heterologous Immunoglobulin Chain Recombinant Carries a Distinct Site for Dinitrophenyl and Obeys the Common Hapten Binding Mechanism. Biochemistry 20:5011 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Froese, A. Sehon, and M. Eigen, Kinetic Studies of Protein Dye and Antibody-Hapten Interactions with the Temperature-Jump Method, Can.J.Chem. 40:1786 (1962).CrossRefGoogle Scholar
  16. 16.
    A. Froese, A. Sehon, and M. Eigen, Kinetics and Equilibrium Studies of the Reaction Between Anti-p-nitrophenyl Antibodies and a Homologous Hapten. Immunochem. 2:135 (1965).CrossRefGoogle Scholar
  17. 17.
    L.A. Day, J.M. Sturtevant, S.J. Singer, The Kinetics of the Reactions Between Antibodies to the 2,4-Dinitrophenyl Group and Specific Haptens, Ann. N.Y. Acad.Sci. 103:611 (1963).PubMedCrossRefGoogle Scholar
  18. 18.
    I. Pecht, D. Givol, and M. Sela, Dynamics of Hapten-Antibody Interaction. Studies on a Myeloma Protein with Anti-2,4-Dinitrophenyl Specificity, J.Mol.Biol. 68:241 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    I. Pecht, D. Haselkorn, and S. Friedman, Kinetic Mapping of Antibody Binding Sites by Chemical Relaxation Spectroscopy, FEBS Lett. 24:331 (1972).PubMedCrossRefGoogle Scholar
  20. 20.
    D. Haselkorn, S. Friedman, D. Givol, and I. Pecht, Kinetic Mapping of the Antibody Combining Site by Chemical Relaxation Spectrometry, Biochemistry 13:2210 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    E.A. Padlan, D.R. Davies, I. Pecht, D. Givol, and C. Wright, Model-building Studies of Antigen-binding Sites: The Hapten Binding Site of MOPC-315. Cold Spring Harbor Symp.Quant.Biol. 41:627 (1976).Google Scholar
  22. 22.
    R.A. Dwek, S. Wain-Hobson, S. Dower, P. Gettins, B. Sutton, and S.J. Perkin, Structure of an Antibody Combining Site by Magnetic Resonance. Nature 266:31 (1977).PubMedCrossRefGoogle Scholar
  23. 23.
    I. Pecht, Dynamic Aspects of Antibody Function, in:“The Antigens,” vol. 6, M. Sela, ed., Academic Press, New York (In Press) (1981).Google Scholar
  24. 24.
    A. Oratore, and I. Pecht, (in preparation).Google Scholar
  25. 25.
    M. Eigen, and L. De Maeyer, Relaxation Methods, Tech.Chem. (N.Y.) Part 2, pp. 63–146 (1973).Google Scholar
  26. 26.
    I. Pecht, Insight into Mode of Antibody Action from Intrinsic and Extrinsic Fluorescent Probes, Ann. N.Y. Acad.Sci. 366:208 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    I. Pecht, and D. Lancet, Kinetics of Antibody-Hapten Interactions, In: “Chemical Relaxation in Molecular Biology,” I. Pecht and R. Rigler, eds., pp. 307–336, Springer Verlag, Berlin and New York, (1977).Google Scholar
  28. 28.
    D. Lancet, Ph.D. Thesis, The Weizmann Institute of Science, Israel, (1978).Google Scholar
  29. 29.
    B.N. Manjula, C.P.J. Glaudemans, E.B. Mashinshi, and M. Potter, Subunit Interactions in Mouse Myeloma Proteins with Antigalactan Activity, Proc.Natl.Acad.Sci. U.S.A. 73:932 (1976).PubMedCrossRefGoogle Scholar
  30. 30.
    G. Schepers, Y. Blatt, K. Himmelspach, and I. Pecht, Binding Site of a Dextran-specific Homogeneous IgM: Thermodynamic and Spectroscopic Mapping by Dansylated Oligosaccharides. Biochemistry 17:2239 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    G. Schepers, Dissertation, University of Freibury, W. Germany, (1978).Google Scholar
  32. 32.
    G. Schepers, Y. Blatt, K. Himmelspach, and I. Pecht, (in preparation).Google Scholar
  33. 33.
    R.M. Clegg, F.G. Loontiens, and T.M. Jovin, Binding of 4-Methylumbelliferyl-D-Mannopyranoside to Dimeric Concanavalin A: Fluorescence Temperature-Jump Relaxation Study, Biochemistry 16:167 (1977).PubMedCrossRefGoogle Scholar
  34. 34.
    I. Pecht, Antibody Combining Sites as a Model for Molecular Recognition, In:“Protein-Ligand Interactions,” H. Sund, and G. Blauer, eds., pp. 356–371 De Gruyter, Berlin (1975).Google Scholar
  35. 35.
    S. Geller, Ph.D. Thesis, Albert Einstein College of Medicine, New York (1976).Google Scholar
  36. 36.
    B.N. Manjula, E.B. Mushinshi, and C.P.J. Glaudemans, The Formation of Active Hybrid Immunoglobulins from the Heavy and Light Chains of β-(1,6) d-Galactan Binding Murine Myeloma IgA’s S-1O J-539. J.Immunol. 119:867 (1977).PubMedGoogle Scholar
  37. 37.
    R.J. Feldmann, M. Potter, and C.P.J. Glaudemans, A Hypothetical Space-filling Model of the V-Regions of te Galactan-binding Myeloma Immunoglobulin J 539, Mol.Immunol. 18:683 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    R.J. Feldmann, personal communication.Google Scholar
  39. 39.
    M. Weigert, L. Gatmartan, E. Loh, J. Schilling, and L. Hood, Rearrangement of Genetic Information May Produce Immunoglobulin Diversity, Nature 276:785 (1978).Google Scholar
  40. 40.
    H.N. Eisen, E.S. Simms, and M. Potter, Mouse Myeloma Proteins with Antihapten Antibody Activity. The Protein Produced by Plasma Cell Tumor MOPC-315, Biochemistry 7:4126 (1968).PubMedCrossRefGoogle Scholar
  41. 41.
    Y. Blatt, F. Karush, and I. Pecht, unpublished.Google Scholar
  42. 42.
    A. Oratore, K. Zidovetzki and I. Pecht, in preparation.Google Scholar
  43. 43.
    R. Zidovetzki, A. Licht, and I. Pecht, Effect of Interchain Disulfide Bond on Hapten Binding Properties of Light Chain Dimer of Protein 315, Proc.Natl.Acad.Sci. U.S.A. 76:5848 (1979).CrossRefGoogle Scholar
  44. 44.
    I. Alexandru, D.I.C. Kells, K.J. Dorrington, and M. Klein, Non-covalent Association of Heavy and Light Chains of Human Immunoglobulin G: Studies Using Light Chain Labelled with a Fluorescent Probe, Mol.Immunol. 17:1351 (1980).PubMedCrossRefGoogle Scholar
  45. 45.
    E.E. Abola, K.R. Ely, and A.B. Edmundson, Marked Structural Differences of the Meg Bence-Jones Dimer in Two Crystal Systems, Biochemistry 19:432 (1980).PubMedCrossRefGoogle Scholar
  46. 46.
    W. Bode, and R. Huber, Induction of the Bovine-Trypsin Transition by Peptides Sequentially Similar to the N-Terminus of Trypsin, FEBS Lett. 68:231 (1976).PubMedCrossRefGoogle Scholar
  47. 47.
    W. Bode, The Transition of Bovine Trypsinogen to a Trypsin-like State upon Strong Ligand Binding. II. The Binding of the Pancreatic Trypsin Inhibitor and of Isoleucine-Valine and of Sequentially Related Peptides to Trypsinogen and to p-Guanidinobenzoate-trypsinogen, J.Mol.Biol. 127:357 (1979).PubMedCrossRefGoogle Scholar
  48. 48.
    H.H. Nolte and E. Neumann, Kinetics and Mechanism for the Conformational Transition in p-Guanidinobenzoate Bovine Trypsinogen Induced by the Isoleucine-Valine Dipeptide, Biophys.Chem. 10: 253 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Israel Pecht
    • 1
  1. 1.The Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations