Skip to main content

Antibody-Hapten Binding Kinetics, Conformational Transitions and Domains Interactions

  • Chapter

Abstract

Upon binding antigen, gross changes primarily in the spatial relation of the Fab domains relative to that of the Fc are expected to occur in the antibody structure 1,2. The question whether conformational changes are caused in the combining site has been of great concern in the context of understanding the mode of effector function activation mechanism3–5. Therefore, the effect induced in antibodies by binding their haptens or even larger parts of their respective antigens, has been examined by a wide range physical and chemical methods3–5. The direct structural studies by crystallography failed to detect differences between the free combining sites and their complexes with haptens in the two cases examined to date6–7. In contrast several spectroscopic and other physical methods provided clear evidence for structural changes induced by hapten binding8–10. In the following the results of the time resolved analysis of antibody-hapten reaction will be described in detail. The kinetic studies of these reactions provided a very detailed insight into the elementary steps of hapten recognition by the antibody combining site. Furthermore, conclusive evidence for a conformational change induced upon hapten binding emerged from these investigations11–14.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.C. Valentine and N.M. Green, Electron Microscopy of an Antibody-Hapten Complex, J. Mol. Biol. 27:615 (1967).

    Article  PubMed  CAS  Google Scholar 

  2. A. Feinstein and E.A. Munn, Conformation of the Free and Antigenbound IgM Antibody MOlecules, Nature, 224:1307 (1969).

    Article  PubMed  CAS  Google Scholar 

  3. R.E. Cathou and K.J. Dorrington, The Conformation, Interaction, and Biological Roles of Immunoglobulin Subunits, in: “Subunits in Biological Systems,” S.N. Timasheff and G.D. Fasman, eds., Part C, pp. 91–224. Decker, N.Y. (1975).

    Google Scholar 

  4. H. Metzger, Effect of Antigen Binding on the Properties of Antibody, Adv. Immunol. 18:169 (1974).

    Article  PubMed  CAS  Google Scholar 

  5. H. Metzger, The Effect of Antigen on Antibodies: Recent Studies, Contemp. Topics Molec. Immunol. 7:119 (1978).

    CAS  Google Scholar 

  6. D.M. Segal, E.A. Padlan, G.M. Cohen, S. Rudikoff, M. Potter, and D.R. Davies, The Three-Dimensional Structure of a Phosphorylcholine-Binding Mouse Immunoglobulin Fab and the Nature of the Antigen Binding Site, Proc.Natl.Acad.Sci. U.S.A. 71:4298 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. R.J. Poljak, Correlations Between Three-Dimensional Structure and Function of Immunoglobulins, CRC Crit.Rev.Biochem. 4:45 (1978).

    Article  Google Scholar 

  8. D.A. Holowka, A.D. Strasberg, J.W. Kimball, J.W.E. Haber, and R.E. Cathou, Changes in Intrinsic Circular Dichroism of Several Homogeneous Anti-Type III Pneumococcal Antibodies on Binding of a Small Hapten, Proc.Natl.Acad.Sci. U.S.A. 69:3399 (1972).

    Article  PubMed  CAS  Google Scholar 

  9. J. Schlessinger, Z.Z. Steinberg, D. Givol, J. Hochman, and I. Pecht, Antigen-induced Conformational Changes in Antibodies and their Fab Fragments Studied by Circular Polarization of Fluorescence, Proc.Natl.Acad.Sci. U.S.A. 72:2775 (1975).

    Article  PubMed  CAS  Google Scholar 

  10. L.A. Tumerman, R.S. Nezlin, and V.D. Zagyansky, Increase of the Rotational Relaxation Time of Antibody Molecule After Complex Formation with Dansyl-Hapten, FEBS Lett. 19:290 (1972).

    Article  PubMed  CAS  Google Scholar 

  11. D. Lancet, and I. Pecht, Kinetic Evidence for Hapten-induced Conformational Transition in Immunoglobulin MOPC 460, Proc. Natl.Acad.Sci. U.S.A. 73:3549 (1976).

    Article  PubMed  CAS  Google Scholar 

  12. S. Vuk-Pavlovic, Y. Blatt, C.P.J. Glaudemans, and D. Lancet, Hapten-Linked Conformational Equilibria in Immunoglobulins XRPC-24 and J-539 Observed by Chemical Relaxation, Biophys. J. 24:161 (1978).

    Article  PubMed  CAS  Google Scholar 

  13. R. Zidovetzki, Y. Blatt, C.P.J. Glaudemans, B.N. Manjula, and I. Pecht, A Common Mechanism of Hapten Binding to Immunoglobulins and Their Heterologous Chain Recombinants, Biochemistry 19:2790 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. R. Zidovetzki, Y. Blatt, and I. Pecht, Heterologous Immunoglobulin Chain Recombinant Carries a Distinct Site for Dinitrophenyl and Obeys the Common Hapten Binding Mechanism. Biochemistry 20:5011 (1981).

    Article  PubMed  CAS  Google Scholar 

  15. A. Froese, A. Sehon, and M. Eigen, Kinetic Studies of Protein Dye and Antibody-Hapten Interactions with the Temperature-Jump Method, Can.J.Chem. 40:1786 (1962).

    Article  CAS  Google Scholar 

  16. A. Froese, A. Sehon, and M. Eigen, Kinetics and Equilibrium Studies of the Reaction Between Anti-p-nitrophenyl Antibodies and a Homologous Hapten. Immunochem. 2:135 (1965).

    Article  CAS  Google Scholar 

  17. L.A. Day, J.M. Sturtevant, S.J. Singer, The Kinetics of the Reactions Between Antibodies to the 2,4-Dinitrophenyl Group and Specific Haptens, Ann. N.Y. Acad.Sci. 103:611 (1963).

    Article  PubMed  CAS  Google Scholar 

  18. I. Pecht, D. Givol, and M. Sela, Dynamics of Hapten-Antibody Interaction. Studies on a Myeloma Protein with Anti-2,4-Dinitrophenyl Specificity, J.Mol.Biol. 68:241 (1972).

    Article  PubMed  CAS  Google Scholar 

  19. I. Pecht, D. Haselkorn, and S. Friedman, Kinetic Mapping of Antibody Binding Sites by Chemical Relaxation Spectroscopy, FEBS Lett. 24:331 (1972).

    Article  PubMed  CAS  Google Scholar 

  20. D. Haselkorn, S. Friedman, D. Givol, and I. Pecht, Kinetic Mapping of the Antibody Combining Site by Chemical Relaxation Spectrometry, Biochemistry 13:2210 (1974).

    Article  PubMed  CAS  Google Scholar 

  21. E.A. Padlan, D.R. Davies, I. Pecht, D. Givol, and C. Wright, Model-building Studies of Antigen-binding Sites: The Hapten Binding Site of MOPC-315. Cold Spring Harbor Symp.Quant.Biol. 41:627 (1976).

    Google Scholar 

  22. R.A. Dwek, S. Wain-Hobson, S. Dower, P. Gettins, B. Sutton, and S.J. Perkin, Structure of an Antibody Combining Site by Magnetic Resonance. Nature 266:31 (1977).

    Article  PubMed  CAS  Google Scholar 

  23. I. Pecht, Dynamic Aspects of Antibody Function, in:“The Antigens,” vol. 6, M. Sela, ed., Academic Press, New York (In Press) (1981).

    Google Scholar 

  24. A. Oratore, and I. Pecht, (in preparation).

    Google Scholar 

  25. M. Eigen, and L. De Maeyer, Relaxation Methods, Tech.Chem. (N.Y.) Part 2, pp. 63–146 (1973).

    Google Scholar 

  26. I. Pecht, Insight into Mode of Antibody Action from Intrinsic and Extrinsic Fluorescent Probes, Ann. N.Y. Acad.Sci. 366:208 (1981).

    Article  PubMed  CAS  Google Scholar 

  27. I. Pecht, and D. Lancet, Kinetics of Antibody-Hapten Interactions, In: “Chemical Relaxation in Molecular Biology,” I. Pecht and R. Rigler, eds., pp. 307–336, Springer Verlag, Berlin and New York, (1977).

    Google Scholar 

  28. D. Lancet, Ph.D. Thesis, The Weizmann Institute of Science, Israel, (1978).

    Google Scholar 

  29. B.N. Manjula, C.P.J. Glaudemans, E.B. Mashinshi, and M. Potter, Subunit Interactions in Mouse Myeloma Proteins with Antigalactan Activity, Proc.Natl.Acad.Sci. U.S.A. 73:932 (1976).

    Article  PubMed  CAS  Google Scholar 

  30. G. Schepers, Y. Blatt, K. Himmelspach, and I. Pecht, Binding Site of a Dextran-specific Homogeneous IgM: Thermodynamic and Spectroscopic Mapping by Dansylated Oligosaccharides. Biochemistry 17:2239 (1978).

    Article  PubMed  CAS  Google Scholar 

  31. G. Schepers, Dissertation, University of Freibury, W. Germany, (1978).

    Google Scholar 

  32. G. Schepers, Y. Blatt, K. Himmelspach, and I. Pecht, (in preparation).

    Google Scholar 

  33. R.M. Clegg, F.G. Loontiens, and T.M. Jovin, Binding of 4-Methylumbelliferyl-D-Mannopyranoside to Dimeric Concanavalin A: Fluorescence Temperature-Jump Relaxation Study, Biochemistry 16:167 (1977).

    Article  PubMed  CAS  Google Scholar 

  34. I. Pecht, Antibody Combining Sites as a Model for Molecular Recognition, In:“Protein-Ligand Interactions,” H. Sund, and G. Blauer, eds., pp. 356–371 De Gruyter, Berlin (1975).

    Google Scholar 

  35. S. Geller, Ph.D. Thesis, Albert Einstein College of Medicine, New York (1976).

    Google Scholar 

  36. B.N. Manjula, E.B. Mushinshi, and C.P.J. Glaudemans, The Formation of Active Hybrid Immunoglobulins from the Heavy and Light Chains of β-(1,6) d-Galactan Binding Murine Myeloma IgA’s S-1O J-539. J.Immunol. 119:867 (1977).

    PubMed  CAS  Google Scholar 

  37. R.J. Feldmann, M. Potter, and C.P.J. Glaudemans, A Hypothetical Space-filling Model of the V-Regions of te Galactan-binding Myeloma Immunoglobulin J 539, Mol.Immunol. 18:683 (1981).

    Article  PubMed  CAS  Google Scholar 

  38. R.J. Feldmann, personal communication.

    Google Scholar 

  39. M. Weigert, L. Gatmartan, E. Loh, J. Schilling, and L. Hood, Rearrangement of Genetic Information May Produce Immunoglobulin Diversity, Nature 276:785 (1978).

    Google Scholar 

  40. H.N. Eisen, E.S. Simms, and M. Potter, Mouse Myeloma Proteins with Antihapten Antibody Activity. The Protein Produced by Plasma Cell Tumor MOPC-315, Biochemistry 7:4126 (1968).

    Article  PubMed  CAS  Google Scholar 

  41. Y. Blatt, F. Karush, and I. Pecht, unpublished.

    Google Scholar 

  42. A. Oratore, K. Zidovetzki and I. Pecht, in preparation.

    Google Scholar 

  43. R. Zidovetzki, A. Licht, and I. Pecht, Effect of Interchain Disulfide Bond on Hapten Binding Properties of Light Chain Dimer of Protein 315, Proc.Natl.Acad.Sci. U.S.A. 76:5848 (1979).

    Article  Google Scholar 

  44. I. Alexandru, D.I.C. Kells, K.J. Dorrington, and M. Klein, Non-covalent Association of Heavy and Light Chains of Human Immunoglobulin G: Studies Using Light Chain Labelled with a Fluorescent Probe, Mol.Immunol. 17:1351 (1980).

    Article  PubMed  CAS  Google Scholar 

  45. E.E. Abola, K.R. Ely, and A.B. Edmundson, Marked Structural Differences of the Meg Bence-Jones Dimer in Two Crystal Systems, Biochemistry 19:432 (1980).

    Article  PubMed  CAS  Google Scholar 

  46. W. Bode, and R. Huber, Induction of the Bovine-Trypsin Transition by Peptides Sequentially Similar to the N-Terminus of Trypsin, FEBS Lett. 68:231 (1976).

    Article  PubMed  CAS  Google Scholar 

  47. W. Bode, The Transition of Bovine Trypsinogen to a Trypsin-like State upon Strong Ligand Binding. II. The Binding of the Pancreatic Trypsin Inhibitor and of Isoleucine-Valine and of Sequentially Related Peptides to Trypsinogen and to p-Guanidinobenzoate-trypsinogen, J.Mol.Biol. 127:357 (1979).

    Article  PubMed  CAS  Google Scholar 

  48. H.H. Nolte and E. Neumann, Kinetics and Mechanism for the Conformational Transition in p-Guanidinobenzoate Bovine Trypsinogen Induced by the Isoleucine-Valine Dipeptide, Biophys.Chem. 10: 253 (1979).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Pecht, I. (1983). Antibody-Hapten Binding Kinetics, Conformational Transitions and Domains Interactions. In: Celada, F., Schumaker, V.N., Sercarz, E.E. (eds) Protein Conformation as an Immunological Signal. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3778-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3778-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3780-5

  • Online ISBN: 978-1-4613-3778-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics