Skip to main content

Conformation of DNA Modified by Bulky Aromatic Carcinogens

  • Chapter
Molecular Biology of Mutagens and Carcinogens

Abstract

From the results described previously, it became evident that many, and perhaps all, carcinogens become covalently bound to nucleic acids in the target tissue. It also appears that this interaction is critical to the carcinogenic process. This covalent modification can introduce important changes, not only in the primary structure of nucleic acids, but also in the conformation (three-dimensional structure) of the nucleic acids at the sites of modification. Since distortions in nucleic acid structure are likely to have functional consequences, a detailed description of these conformational changes seems essential if we are to ultimately understand the carcinogenic process at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Behe, M., and Felsenfeld, G. (1981) Effects of methylation on a synthetic polynucleotide: The B-Z transition in poly(dG-m5dC) · poly (dG-m5dC). Proc. Natl. Acad. Sci. USA 78, 1619–1623.

    Article  PubMed  CAS  Google Scholar 

  • Drinkwater, N. R., Miller, J. A., Miller, E. C., and Yang, N.-C. (1978) Covalent intercalative binding to DNA in relation to the mutagenicity of hydrocarbon epoxides and N-acetoxy-acetylaminofluorene. Cancer Res. 38,3247–3255.

    PubMed  CAS  Google Scholar 

  • Evans, F. E., Miller, D. W., and Beland, F. A. (1980) Sensitivity of the conformation of deoxyguanosine to binding at the C-8 position by N-acetylated and unacetylated 2-aminofluorene. Carcinogenesis 1, 955–959.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, R. P. P. (1975) In vitro recognition of carcinogen-induced local denaturation sites in native DNA by S1 endonuclease from Aspergillus oryzae. Nature (London) 257, 151–152.

    Article  CAS  Google Scholar 

  • Fuchs, R., and Daune, M. (1972) Physical studies of deoxyribonucleic acid after covalent binding of carcinogen. Biochemistry 11, 2659–2666.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, R. P. P., and Daune, M. P. (1974) Dynamic structure of DNA modified with the carcinogen N-acetoxy-N-2-acetylaminofluorene. Biochemistry 13, 4435–4440.

    Article  PubMed  CAS  Google Scholar 

  • Geacintov, N. E., Gagliano, A. G., Ivanovic, V., and Weinstein, I. B. (1978) Electric linear dichroism study on the orientation of benzo(a)pyrene 7,8-dihydrodiol 9,10-oxide covalently bound to DNA. Biochemistry 17, 5256–5262.

    Article  PubMed  CAS  Google Scholar 

  • Geacintov, N. E., Yoshida, H., Ibanez, V., and Harvey, R. G. (1981) Non-covalent intercalative binding of 7,8-dihydroxy-9, 10-epoxybenzo(a)pyrene to DNA. Biochem. Biophys. Res. Commun. 100, 1569–1577.

    Article  PubMed  CAS  Google Scholar 

  • Grunberger, D., and Santella, R. M. (1981) Alternative conformations of DNA modified by N-2-acetylaminofluorene. J. Supramol. Structure Cell. Biochem. 17, 231–244.

    Article  CAS  Google Scholar 

  • Grunberger, D., and Weinstein, I. B. (1976) The base displacement model. In Biology of Radiation and Carcinogenesis (J. M. Yuhas, R. W. Tennant, and J. D. Regan, eds.), Raven Press, New York, pp 175–187.

    Google Scholar 

  • Grunberger, D., and Weinstein, I. B. (1978) Conformational changes in nucleic acids modified by chemical carcinogens. In Chemical Carcinogens and DNA, Part 2 (P. L. Grover, ed.), CRC Press, Boca Raton, Fla., pp. 60–93.

    Google Scholar 

  • Hamada, H., Petrino, M. G., and Kakunaga, T. (1982) A novel repeated element with Z-DNA forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79, 6465–6469.

    Article  PubMed  CAS  Google Scholar 

  • Higerty, B., and Broyde, S. (1983) AAF linked to the guanine amino group: a B-Z junction. Nucleic Acids Res. 11, 3241–3254.

    Article  Google Scholar 

  • Hogan, M. E., Dattagupta, N., and Whitlock, Jr., J. P. (1981) Carcinogen-induced alteration of DNA structure. J. Biol. Chem. 256, 4504–4513.

    PubMed  CAS  Google Scholar 

  • Nickol, J., Behe, M., and Felsenfeld, G. (1982) Effect of the B-Z transition in poly (dG-m5dC) · poly (dG-m5dC) on nucleosome formation. Proc. Natl. Acad. Sci. USA 79, 1771–1775.

    Article  PubMed  CAS  Google Scholar 

  • Nordheim, A., Pardue, M. L., Lafer, E. M., Moller, A., Stollar, B. D., and Rich, A. (1981) Antibodies to left-handed Z-DNA bind to interband regions of Drosophila polytene chromosomes. Nature (London) 294, 417–422.

    Article  CAS  Google Scholar 

  • Prusik, T., Geacintov, N. E., Tobiasz, C., Ivanovic, V., and Weinstein, I. B. (1979) Fluorescence study of the physico-chemical properties of a benzo(a)pyrene 7,8-dihydrodiol-9,10-oxide derivative bound covalently to DNA. Photochem. Photobiol. 29,223–232.

    Article  PubMed  CAS  Google Scholar 

  • Rich, A. (1982) Z-DNA: Its chemistry and biology. In Primary and Tertiary Structure of Nucleic Acids and Cancer Research (M. Miwa, S. Nishimura, A. Rich, D. G. Söll, and T. Sugimura, eds.), Japan Scientific Societies Press, Tokyo, pp. 153–164.

    Google Scholar 

  • Sage, E., and Leng, M. (1980) Conformation of poly (dG-dC) · poly (dG-dC) modified by the carcinogens N-acetoxy-N-acetyl-2-aminofluorene. Proc. Natl. Acad. Sci. USA 77, 4597–4601.

    Article  PubMed  CAS  Google Scholar 

  • Santella, R. M., Kriek, E., and Grunberger, D. (1980) Circular dichroism and proton magnetic resonance studies of dApdG modified with 2-aminofluorene and 2-acetylaminofluorene. Carcinogenesis 1, 897–90

    Article  PubMed  CAS  Google Scholar 

  • Santella, R. M., Grunberger, D., and Weinstein, I. B. (1983) Carcinogens can induce alternate conformations in nucleic acid structure. Cold Spring Harbor Symp. Quant. Biol. 47,339–346.

    PubMed  Google Scholar 

  • Undeman, O., Lycksell, P.O., Graslund, A., Astlid, T., Ehrenberg, A., Jernstrom, B., Tjerneld, F., and Norden, B. (1983) Covalent complexes of DNA and two steroisomers of benzo(a)pyrene 7,8-dihydrodiol-9,10-epoxide studied by fluorescence and linear dichroism. Cancer Res. 43, 1851–1860.

    PubMed  CAS  Google Scholar 

  • Wells, R. D., Miglietta, J. J., Klysik, J., Larson, J. E., Stirdivant, S. M., and Zacharias, W. (1982) Spectroscopic studies on acetylaminofluorene-modified (dT-dG)n · (dC-dA)n suggest a lefthanded conformation. J. Biol. Chem. 257, 10166–10171.

    PubMed  CAS  Google Scholar 

  • Zacharias, W., Larson, J. E., Klysik, J., Stirdivant, S. M., and Wells, R. D. (1982) Conditions which cause the right-handed and left-handed DNA conformational transitions: Evidence for several types of left-handed DNA structures in solution. J. Biol. Chem. 257, 2775–2782.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Singer, B., Grunberger, D. (1983). Conformation of DNA Modified by Bulky Aromatic Carcinogens. In: Molecular Biology of Mutagens and Carcinogens. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3772-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3772-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3774-4

  • Online ISBN: 978-1-4613-3772-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics