Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((ASIB,volume 90))

Abstract

When a solid target is irradiated by an intense pulse of laser light, an inhomogeneous plasma is created (Fig. 1). A low-density ideal plasma (ne < 1021 cm−3) expands toward the laser; this hot blowoff region refracts and absorbs the laser beam. The absorbed energy is conducted into a dense plasma region (ne = 1021 to 1023 cm−3) where the heat flow is converted into hydrodynamic motion of the exploding plasma. The large reaction pressure shocks the target surface, compressing it above the initial solid density into a state which may be called high-density matter (ne > 1023 cm−3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nuckolls, J., Wood, L., Thiessen, A. and Zimmerman, G., Nature 239, 139 (1972); Lawrence Livermore National Laboratory Annual Reports UCRL-50021; see also the series Laser Interactions and Related Plasma Phenomena, vols. 1–6, edited by H. Hora and H. Schwartz, Plenum Press.

    Article  ADS  Google Scholar 

  2. R. More, UCRL-84991, “Atomic Physics in Inertial-Confinement Fusion”, March 1981, to appear in Applied Atomic Collision Physics, Vol. II, ed. by H. S. Massey, 1983.

    Google Scholar 

  3. Proceedings of Workshop Conference on Lowering of the Ionization Potential, JILA Report 79, University of Colorado, Boulder, Colorado, 1965.

    Google Scholar 

  4. G. Zimmerman and R. More, J.Q.S.R.T. 23, 517 (1980).

    Google Scholar 

  5. R. More, J.Q.S.R.T. 27, 345 (1982).

    Google Scholar 

  6. B. Yaakobi, D. Steel, E. Thorsos, A. Hauer and B. Perry, Phys. Rev. Letters 39, 1526 (1977); Yaakobi et al., Phys. Rev. A19, 1247 (1979); Yaakobi et al., Phys. Rev. Letters 44, 1072 (1980).

    Article  ADS  Google Scholar 

  7. A. Hauer, K. Mitchell, D. van Hulsteyn, T. Tan, E. Linnebur, M. Mueller, P. Kepple and H. Griem, Phys. Rev. Letters 45, 1495 (1980); Mitchell et al., Phys. Rev. Letters 42, 232 (1979).

    Article  ADS  Google Scholar 

  8. J. Kilkenny, R. Lee, M. Key and J. Lunney, Phys. Rev. A22, 2746 (1980); Kilkenny et al. in Spectral Line Shapes (p. 367), ed. by B. Wende, deGruyter and Co., Berlin (1981).

    Google Scholar 

  9. H. R. Griem, M. Blaha, and P. Kepple, Phys. Rev. 19A, 2421 (1971); H. Griem, in Laser Interaction and Related Plasma Phenomena, vol. 5, Plenum Publishing Co., (1981); H. Griem, Phys. Rev. A20, 606 (1979); H. Griem, Plasma Spectroscopy, McGraw-Hill, New York (1964); H. Griem, Spectral Line Broadening by Plasmas, Academic Press, New York (1974).

    ADS  Google Scholar 

  10. C. H. Hooper, Phys. Rev. 149, 77 (1966); Phys. Rev. 165, 215 (1968); Woltz, Iglesias and Hooper, J.Q.S.R.T. 27, 233 (1982).

    Article  ADS  Google Scholar 

  11. A. Hauer (preprint LA-UR-8660).

    Google Scholar 

  12. M. Key and R. Hutcheon, Advances in Atomic and Molecular Physics, vol. 16, Academic Press (1981).

    Google Scholar 

  13. M. Rosen, et al, Physics of Fluids 22, 2020 (1979).

    Article  ADS  Google Scholar 

  14. G. Zimmerman, presentation at this conference; G. Zimmerman and W. Kruer, Comments on Plasma Physics 2, 85 (1975); see also articles in Ref. 1.

    Google Scholar 

  15. T. A. Carlson, C. W. Nestor, Jr., N. Wasserman, and J. D. McDowell, Atomic Data 2, 63 (1970); J. S. Scofield, Phys. Rev. 179, 9 (1969); J. Scofield, unpublished data tables.

    Article  ADS  Google Scholar 

  16. H. Bethe and R. Jackiw, Intermediate Quantum Mechanics, 2nd Ed., W. A. Benjamin, Inc., New York, (1968); N. H. March, Self-Consistent Fields in Atoms, Pergamon Press, Oxford (1975); P. Gombas, Die Statistiche Theorie Pes Atoms und Ihre Andwendungen, Springer-Verlag, Vienna (1949).

    Google Scholar 

  17. E. Nardi, E. Peleg, and Z. Zinnamon, Physics of Fluids 21, 574 (1978).

    Article  ADS  Google Scholar 

  18. E. McGuire et al., Phys. Rev. A26, 1318 (1982).

    ADS  Google Scholar 

  19. S. Skupsky, Phys. Rev. A16, 727 (1977); N. Arista and W. Brandt, Phys. Rev. A23, 1898 (1981); C. Deutsch, G. Maynard and H. Minoo, to appear in Laser Interaction and Related Plasma Phenomena, vol. 6, ed. by H. Hora, Plenum Press (ca. 1983).

    ADS  Google Scholar 

  20. R. More, Y.-T. Lee and D. S. Bailey, unpublished preprint UCRL-87147.

    Google Scholar 

  21. H. D. Betz, Methods of Experimental Physics 73 (1980); W. E. Lamb, Phys. Rev. 5–8, 696 (1940).

    Google Scholar 

  22. O. Firsov, Soviet Physics JETP 5, 1192 (1957) and JETP 6, 534 (1958); J. Lindhard, V. Nielsen and M. Scharff, Det Kong Danske Vidensk Selsk 36, No. 10 (1968).

    MATH  Google Scholar 

  23. C. Lee, C. Longmire and M. Rosenbluth, unpublished report LAMS-5694, Los Alamos National Laboratory (1974).

    Google Scholar 

  24. R. More, Phys. Rev. A19, 1234 (1979).

    ADS  Google Scholar 

  25. J. P. Biersack and J. F. Ziegler, Nuclear Instruments and Methods 194, 93 (1982) give a recent review of interatomic potentials for strong collisions of neutral atoms.

    Article  ADS  Google Scholar 

  26. J.-P. Hansen, Journal de Physique 36, L-133 (1975); S. Galara and J.-P. Hansen, Phys. Rev. A14, 816 (1976); H. DeWitt,Strongly Coupled Plasmas, ed. by G. Kalman, Plenum Publishing Co., New York (1978).

    Article  Google Scholar 

  27. S. Brush, H. Sahlin, and E. Teller, J. Chem. Phys. 45, 2102 (1966).

    Article  ADS  Google Scholar 

  28. A comprehensive review of the properties of the Coulomb fluid is given by M. Baus and J.-P. Hansen, Physics Reports 59, 1 (1980).

    Google Scholar 

  29. J. Stewart and K. Pyatt, Astrophys. J. 144, 1203 (1966).

    Article  ADS  Google Scholar 

  30. P. Vieillefoisse, J. Physique 42, 723 (1981).

    Article  Google Scholar 

  31. J. Weisheit, to be published in Applied Atomic Collision Physics, vol. II, ed. by H. S. Massey, Academic Press (1983).

    Google Scholar 

  32. J.-P. Hansen and I. R. McDonald, Phys. Rev. Lett. 41, 1379 (1978).

    Article  ADS  Google Scholar 

  33. C. Deutsch, Physics Lett. A60, 317 (1977).

    Article  ADS  Google Scholar 

  34. H. DeWitt and Y. Rosenfeld, Physics Lett. A75, 79 (1979); Y. Rosenfeld, Journal de Physique, 41, C2–77 (1980); Y.Rosenfeld and A. Baram, J. Chem. Phys. 75, 427 (1981).

    Article  ADS  Google Scholar 

  35. Both Born and partial-wave calculations were performed for dense neon plasmas by Pauline Hsu Lee, unpublished doctoral thesis, University of Pittsburgh (1977).

    Google Scholar 

  36. H. Minoo, C. Deutsch and J.-P. Hansen, Phys. Rev. A14, 840 (1976).

    ADS  Google Scholar 

  37. D. Boercker, F. J. Rogers and H. DeWitt, Phys. Rev. A25, 1623 (1982); J.-P. Hansen and J. McDonald, Phys. Rev. Lett. 41, 1379 (1978); M. Baus, J.-P. Hansen, L. Sjogren, Phys. Lett. 82A, 180 (1981).

    ADS  Google Scholar 

  38. H. Brysk, P. Campbell and P. Hammerling, Plasma Physics 17, 473 (1975).

    Article  ADS  Google Scholar 

  39. Y.-T. Lee and R. More, unpublished.

    Google Scholar 

  40. J. Davis and M. Blaha, J.Q.S.R.T. 27, 307 (1982); N. F. Lane, J. Weisheit and B. Whitten, unpublished; see also reference

    Google Scholar 

  41. A review of the experimental situation and some proposed explanations is given by W. Kruer, Comments on Plasma Physics 5, 69 (1979).

    Google Scholar 

  42. A Fokker-Planck calculation of transport by non-Maxwellian free electrons has recently been performed by J. Albritton at LLNL. The calculations indicate that distortion of the tail of the Maxwellian tends to inhibit electron thermal conduction.

    Google Scholar 

  43. D. A. Liberman, J.Q.S.R.T. 27, 335 (1982); D. A. Liberman, Phys. Rev. B20, 4981 (1979).

    Google Scholar 

  44. F. Perrot, Phys. Rev. A26, 1035 (1982).

    ADS  Google Scholar 

  45. K.-F. Berggren and A. Froman, Arkiv für Physik 39, 355 (1969).

    Google Scholar 

  46. B. Rozsnyai, Phys. Rev. 145, 1137 (1972).

    Google Scholar 

  47. W. Zink, Astrophys. J. 162, 145 (1970); T. Carlson, D. Mayers, and D. Stibbs, Mon. Not. Roy. Ast. Soc. 140, 483 (1968).

    Article  ADS  Google Scholar 

  48. F. J. Rogers, Phys. Rev. A23, 1008 (1981).

    ADS  Google Scholar 

  49. W. Huebner, J.Q.S.R.T. 10, 949 (1970); W. Huebner, M. Argo, and L. Ohlsen, J.Q.S.R.T. 19, 93 (1978).

    Google Scholar 

  50. H. Mayer, unpublished Los Alamos Report LA-647.

    Google Scholar 

  51. D. Post, R. V. Jensen, C. B. Tarter, W. Grasberger, and W. A. Lokke, Atomic Data and Nuclear Tables 20, 397 (1977).

    Article  ADS  Google Scholar 

  52. W. A. Lokke and W. H. Grasberger, preprint UCRL-52276, Lawrence Livermore National Laboratory (1977).

    Google Scholar 

  53. R. More, Phys. Rev. A4, 1782 (1971); R. More and E. Gerjuoy, Phys. Rev. A7, 1288 (1973).

    ADS  Google Scholar 

  54. J. Green, J.Q.S.R.T. 4, 639 (1964).

    Google Scholar 

  55. F. Grimaldi and A. Grimaldi-LeCount, J.Q.S.R.T. 27, 373 (1982).

    Google Scholar 

  56. G. Zimmerman, unpublished lecture at NATO Workshop, Palermo, 1982.

    Google Scholar 

  57. R. McWhirter in Plasma Diagnostics, ed. by Huddlestone, Academic Press, New York (1965). R. Landshoff and J. Perez, Phys. Rev. A13, 1619 (1976).

    Google Scholar 

  58. D. Salzmann, Phys. Rev. A20, 1704 (1979); Phys. Rev. A20, 1713 (1979); Phys. Rev. A21, 1761 (1980).

    ADS  Google Scholar 

  59. The result given here is based, in part, on an unpublished study of nonequilibrium thermodynamics by F. Keffer and R. More.

    Google Scholar 

  60. The conclusion reached here contradicts an analysis given by C. Kittel, Elemental Statistical Physics, p. 165–168, J. Wiley, New York, 1958. A careful comparison will show that the textbook treatment omits the spontaneous emission factor included in our Eq. (6–2). This omission is effectively equivalent to selecting a very high radiation temperature (so that Ny >> 1), but in this case one cannot Δachieve AT << Te. Thus it is not surprising that the (incorrect) rate equations given by Kittel are incompatible with the principle of minimum entropy production. Footnote 59 applies also to these remarks.

    Google Scholar 

  61. N. N. Kalitkin and L. Kuzmina, Sov. Phys. Sol. State 7, 287 (1972); F. Perrot, Phys. Rev. A20, 586 (1979); R. More, Phys. Rev. A19, 1234 (1979).

    Google Scholar 

  62. D. A. Kirzhnitz, Yu. Lozovik and A. Shpatakavskaya, Sov. Phys. Uspekhi 18, 649 (1976).

    Article  ADS  Google Scholar 

  63. J. Schwinger, Phys. Rev. A22, 1827 (1980).

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

More, R.M. (1983). Atomic Processes in High-Density Plasmas. In: Joachain, C.J., Post, D.E. (eds) Atomic and Molecular Physics of Controlled Thermonuclear Fusion. NATO Advanced Science Institutes Series, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3763-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3763-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3765-2

  • Online ISBN: 978-1-4613-3763-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics