Skip to main content

A Fuzzy, Heuristic, Interactive Approach to the Optimal Network Problem

  • Chapter

Abstract

Among the various problems that have to be solved in the transportation planning field, that of designing optimally a network has focused the attention of many researchers. The network is formally represented as a graph and we must find a subset of the maximal set of links, which are for instance streets or roads. The problem belongs to the combinatorial field, and its optimal solving is impossible for practical-sized sets of data; we are forced to use heuristic methods which are not completely satisfactory by their very nature.

This paper is a summary of the author’s thesis, which was done at the Centre d’Etudes et de Recherches de Toulouse (France), Department d’Etudes et de Recherches en Automatique, under the sponsorship of the Ecole Nationale Superieure de l’Aeronautique et de l’Espace (Toulouse France). The author was supported by a scholarship of

the Societe des Amis de l’Enaae (Paris).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. A. Avila, “Optimal design of transportation network with fluctuating demands: A case in multicommodity network flows”. Stanford University, Calif. 1972.

    Google Scholar 

  2. G. Bel, D. Dubois, and M. Llibre, A set of methods in transportation network synthesis and analysis, J. Opl. Res. Soc., 30, 797–808, 1979.

    Google Scholar 

  3. R. Bellman and L. A. Zadeh, Local and Fuzzy Logics, Memo. ERL M504 Electronics Research Lab., University of California, Berkeley, 1976.

    Google Scholar 

  4. J. W. Billheimer, Network design of fixed and variable elements. Transportation science, Vol. 7, No. 1, 1973, pp. 49–74.

    Article  Google Scholar 

  5. D. E. Boyce, A. Fahri, and R. Weishedel, “Optimal network problem: a branch and bound algorithm.” Environment and Planning, Vol. 5, 1973, pp. 519–533.

    Article  Google Scholar 

  6. A. De Luca and R. M. Capocelli, Fuzzy sets and decision theory. Inf. and Cont. 23, 1973, pp. 446–473.

    Article  MATH  Google Scholar 

  7. D. Dubois, Quelques outils Methodologiques pour la conception de reseaux de transport. These Doct. Ing. ENSAE/CERT-DERA Toulouse, France, 1977.

    Google Scholar 

  8. D. Dubois and H. Prade, Algorithmes de plus court chemins pour traiter des donnees floues, R.A.I.R.O. ( 1978, No. 2).

    Google Scholar 

  9. D. Dubois and H. Prade, A comment on “Tolerance analysis using fuzzysets” and “A procedure for multiple aspect decision making using fuzzy sets by R. Jain”. in Int. J. on Systems Science, Vol. 9, No. 3, 1978, pp. 357–360.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Dubois and H. Prade, “Operations on fuzzy numbers”, Int. J. on Systems Science, 1978, Vol. 9, No. 6, 613–626.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Dubois and H. Prade, “Systems of linear fuzzy constraints”, Fuzzy Sets and Systems, 3, 37–48, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. R. Gaines, Foundations of fuzzy reasoning, Int. J. Man Machine Studies, 8, 1976, pp. 623–668, also in [14].

    Article  MathSciNet  MATH  Google Scholar 

  13. A. M. Geoffrion and R. Nauss, “Parametric and post-optimality analysis in integer linear programming”, Working paper, No. 246, 1976, UCLA.

    Google Scholar 

  14. M. M. Gupta, G. Saridis, and B. R. Gaines, Fuzzy Automata and Decision Processes, North-Holland, 1977.

    Google Scholar 

  15. Hoang Hai Hoc, A computational approach to the selection of an optimal network, Management Science, 19, 1973, No. 5, pp. 488–498.

    Article  MATH  Google Scholar 

  16. R. Jain, A procedure for multiple aspect decision making using fuzzy sets, Int. J. on Systems Science, 8, 1977, Vol. 1, pp. 1–7.

    Google Scholar 

  17. Jeroslow, “A one constraint 149-variable zero one program requiring 9 million years for solving using branch and bound method. Techn. Rep. Carnegie Mellon Univ., Pittsburgh, 1973.

    Google Scholar 

  18. D. S. Johnson, J. K. Lenstra, and A. G. H. Rinnoy Khan., “The complexity of the network design problem,” Math. Cent. Dept. of Opns. Res., Amsterdam, 1977.

    Google Scholar 

  19. R. M. Karp, “On the computational complexity of combinatorial problems”, Networks, 5, 1975, pp. 45–68.

    MathSciNet  MATH  Google Scholar 

  20. A. Kaufmann, “Introduction a la theorie des sous ensembles flous et a ses applications.” Tomes 1,2,3,4, 1973–1976, Masson.

    Google Scholar 

  21. G. L. Nemhauser, L. E. Trotter, and M. J. Magazine, “When the greedy solution solves the knapsack problem.” Opns. Res. 23, 2, 1975, 207–217.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Loss, Optimal network design without congestion: some computational results. Univ. of Montreal Centre de Recherches sur les transports #40, 1976.

    Google Scholar 

  23. Loubal, “A network evaluation procedure.” Bay Area Transportation Commission, 1966.

    Google Scholar 

  24. Nahmias, “Fuzzy Variables.” presented at ORSA TIMS Meeting, Miami, 1976, also “Fuzzy Sets and Systems, Vol. 1, No. 2, 1978, pp. 97–111.

    Google Scholar 

  25. R. M. Nauss, Parametric Integer Programming, Ph.D. Dissertation UCLA. Working paper No. 226, 1975.

    Google Scholar 

  26. Ochoa-Rosso, “Optimum project addition in urban transportation network via descriptive traffic assignment models. D.C.E./M.I.T., Cambridge, Mass., 1968.

    Google Scholar 

  27. Poulit, “Urbanisme et transport: le critere d’accessibilite et de development urbain”, S.E.T.R.A. Division Urbaine, 1970.

    Google Scholar 

  28. H. Prade, Ordonnancement et temps reel. These doct. ing. ENSAE/CERT-DERA, Toulouse, France, 1977.

    Google Scholar 

  29. H. Prade, “Exemple d’approche heuristique, interactive, floue pout un probleme d’ordonnancement.” Communication presented at AFCET Congress “Modelisation et Maitrise des Systemes” Versailles. Nov., 1977. Editions Hommes et Techniques. vol. 2, pp. 347–355. “Using Fuzzy Sets Theory in a Scheduling Problem: A Case Study”, “Fuzzy Sets and Systems”, 2, 153–165, 1979.

    MathSciNet  MATH  Google Scholar 

  30. S. Sahni, “Computationally related problems”, SIAM J. on Computers, 3, 1976, No. 4.

    MathSciNet  Google Scholar 

  31. A. J. Scott, The optimal network problem: some computational procedures Transportation Research, Vol. 3, 1969, pp. 201–210.

    Google Scholar 

  32. S. Stairs, “Selecting an optimal traffic network”, Jr. of Transport, Economics, and Policy, 1968, pp. 218–231.

    Google Scholar 

  33. L. A. Zadeh, Fuzzy sets, Inf. and Cont. 8, 1965, pp. 338–353.

    MathSciNet  MATH  Google Scholar 

  34. L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes”, IEEE Trans. on System, Man and Cybernetics, 3, pp. 28–44.

    Google Scholar 

  35. Y. P. Chan, “Optimal travel time reduction in a transport network”, Res. Rep. R-69–39, M.I.T.-D.C.E., Cambridge, Mass., 1969.

    Google Scholar 

  36. C. Daganzo and Y. Sheffi, “On stochastic models of traffic assignment,” Trans. Sci., 11 (3) 1977, pp. 253–274.

    Article  Google Scholar 

  37. R. B. Dial, A probabilistic multipath assignment model which obviates path enumeration, Trans. Res. 5, 1971, 83–111.

    Article  Google Scholar 

  38. A. Rosenfeld, “Fuzzy graphs,” in L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura, Eds. Fuzzy Sets and their Applications to Cognitive and Decision Sciences, Academic Press, New York, 1975, pp. 77–95.

    Google Scholar 

  39. Steenbrink, “Optimization of Transport Networks”, Wiley, 1974.

    Google Scholar 

  40. L. A. Zadeh, PRUF-A meaning representation language for natural language. Memo ERL M 77 61, Univ. of Calif., Berkeley, 1977.

    Google Scholar 

  41. L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility”, “Fuzzy Sets and Systems” I, n°I, pp. 3–28, 1978.

    Google Scholar 

  42. J. G. Koenig, Indicators of urban accessibility: theory and applications, Transportation, 9, n°2, 1980, 145–172.

    Article  Google Scholar 

  43. D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, 1980.

    MATH  Google Scholar 

  44. D. Dubois and H. Prade, Criteria aggregation and ranking of alternatives in the framework of fuzzy set theory, to appear in “Fuzzy set and decision analysis” ( H. J. Zimmermann and L. A. Zadeh, eds.) TIMS Series in the management sciences, 1982, North Holland.

    Google Scholar 

  45. D. Dubois and H. Prade, Unfair coins and necessity measures submitted to Fuzzy Sets and Systems.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Dubois, D. (1983). A Fuzzy, Heuristic, Interactive Approach to the Optimal Network Problem. In: Wang, P.P. (eds) Advances in Fuzzy Sets, Possibility Theory, and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3754-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3754-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3756-0

  • Online ISBN: 978-1-4613-3754-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics