Free Electron Laser Wave and Particle Dynamics

  • William B. Colson
Part of the Ettore Majorana International Science Series book series (SLAP, volume 49)


In a free electron laser, a beam of relativistic electrons passes through a static periodic magnetic field to amplify a superimposed coherent optical wave (Figure 1). Here, the lasing process has been reduced to its most fundamental form and is manifestly classical in nature. This point is at the root of many of the free electron lasers potential advantages over conventional atomic lasers; many properties of atomic lasers such as efficiency, are limited by quantum mechanics. This new laser is free from the bonds constraining atomic lasers to a particular wavelength and therefore is continuously tunable. The optical cavity contains only light, radiating electrons and the magnetic field so that intense optical fields may propagate without the degrading non-linear effects (self-focussing, etc.) of denser media. The advanced technology of high-energy electron accelerators and storage rings promises efficient recirculation of the beam energy.


Optical Pulse Resonance Parameter Particle Dynamics Electron Pulse Optical Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M.J. Madey, J. Appl. Phys. 42, 1906 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    L.R. Elias, W.M. Fairbank, J.M.J. Madey, H.A. Schwettman, T.I. Smith, Phys. Rev. Lett. 36, 717 (1976); reported in Physics Today, p. 17, February (1976).ADSCrossRefGoogle Scholar
  3. 3.
    D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman, T.I. Smith, Phys. Rev. Lett. 38, 892 (1977); reported in Scientific American, p. 63, June (1977).ADSCrossRefGoogle Scholar
  4. 4.
    R.H. Pantell, G. Soncini, and H.E. Puthoff, IEEE J. Quantum Electronics 4, 905 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    W.B. Colson, Phys. Lett. 59A, 187 (1976); W.B. Colson, Ph.D. Thesis, Stanford University (1977).ADSGoogle Scholar
  6. 6.
    W. Becker and H. Mitter, Z. Physik B35, 399 (1979).ADSGoogle Scholar
  7. 7.
    F.A. Hopf, P. Meystre, M.O. Scully and W.H. Louisell, Phys. Rev. Lett. 37, 1342 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    N.M. Kroll and W.A. McMullin, Phys. Rev. 17A, 300 (1978).ADSGoogle Scholar
  9. 9.
    T. Kwan, J.M. Dawson and T. Lin, Phys. of Fluids 20, 581 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    P. Sprangle, Cha-Mei Tang, W.M. Manheimer and R.A. Smith, Naval Research Lab memorandum Report 4033 and 4034.Google Scholar
  11. 11.
    W.B. Colson, Phys. Lett. 64A, 190 (1977); W.B. Colson, “Physics of Quantum Electronics Vol. 5, Chapter 4,” ed. S. Jacobs, M. Sargent, and M. Scully, Addison-Wesley Publishing Co., (1978).Google Scholar
  12. 12.
    A. Bambini and A. Renieri, Nuovo Cimento 21, 399 (1978).Google Scholar
  13. 13.
    V.N. Baier and A.I. Milstein, Phys. Lett. 65A, 319 (1978).ADSGoogle Scholar
  14. 14.
    W. Colson and S.K. Ride, Phys. Lett. 79A, 379 (1980).ADSGoogle Scholar
  15. 15.
    “Physics of Quantum Electronics, Vol. 7”, Ed. S. Jacobs, H. Pilloff, M. Sargent III, M. Scully and R. Spitzer, Addison-Wesley Publishing Co., (1980).Google Scholar
  16. 16.
    Similar figures in reference 15 (Colson and Ride, Chapter 13) do not have the separatrix properly positioned along the ζ-axis.Google Scholar
  17. 17.
    H. Haken, Synergetics, Springer-Verlag, (1977); V. de Giorgio and M.O. Scully, Phys. Rev. 2A, 1170 (1979).Google Scholar
  18. 18.
    F.A. Hopf, T.G. Kuper, G.T. Moore, and M.O. Scully, Physics of Quantum Electronics Vol. 7, Chapter 3”, ed. S. Jacobs, H. Pilloff, M. Sargent III, M. Scully and R. Spitzer, Addison-Wesley Publishing Co., (1980).Google Scholar
  19. 19.
    J.M.J. Madey, Final Technical Report to ERDA, Contract EY 76-S-03-0326 PA 48 and PA 49 (1977).Google Scholar
  20. 20.
    In reference 15 (Colson and Ride, Chapter 13), the theoretical laser line was improperly presented as overlapping the experimental line; this was due to a numerical mistake in evaluating the Fourier transform of φ(z).Google Scholar
  21. 21.
    J.M.J. Madey, Private Communication.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • William B. Colson
    • 1
  1. 1.Quantum InstituteUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations