Advertisement

Classical Trajectories and Coherent States of a Free Electron Laser

  • R. Bonifacio
  • F. Casagrande
  • L. A. Lugiato
Part of the Ettore Majorana International Science Series book series (SLAP, volume 49)

Abstract

A great deal of theoretical research on the free electron laser (FEL) has occurred since Madey and coworkers first observed FEL operation as an amplifier1 and as an oscillator2. Current trends in theory are reviewed in this paper, together with the experimental efforts.

Keywords

Coherent State Photon Number Laser Field Free Electron Laser Classical Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.R. Elias, W.M. Fairbank, J.M.J. Madey, H.A. Schwettman and T.I. Smith, “Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field”, Phys. Rev. Lett. 36, 717 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman and T.I. Smith, “First operation of a free-electron laser”, Phys. Rev. Lett. 38, 892 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    F.A. Hopf, P. Meystre, M.O. Scully and W.H. Louisell, “Classical theory of a free-electron laser”, Opt. Comm. 18, 413 (1976); “Strong-signal theory of a free-electron laser”, Phys. Rev. Lett. 37, 1342 (1976); H. Al Abawi, F.A. Hopf and P. Meystre, “Electron-dynamics in a free-electron laser”, Phys. Rev. A 16, 666 (1977); H. Al Abawi, F.A. Hopf, G.T. Moore and M.O. Scully, “Coherent transients in the free-electron laser: laser lethargy and coherence brightening”, Opt. Comm. 30, 235 (1979); G.T. Moore and M.O. Scully, “Coherent dynamics of a free electron laser with arbitrary magnet geometry. I-General formalism”, Phys. Rev. A 21, 2000 (1980; R. Bonifacio, P. Meystre, G.T. Moore and M.O. Scully, “Coherent dynamics of a free electron laser with arbitrary magnet geometry. II. Conservation laws, small-signal theory, and gain=spread relations”, Phys. Rev. A 21, 2009 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    W.B. Colson, “One-body electron dynamics in a free electron laser”, Phys. Lett. A 64, 190 (1977); W.H. Louisell, J.F. Lam, D.A. Copeland and W.B. Colson, “Exact classical electron dynamics approach for a free-electron laser amplifier”, Phys. Rev. A 19, 288 (1979); W.B. Colson, contribution to this volume.CrossRefGoogle Scholar
  5. 5.
    A. Bambini and A. Renieri, “The free electron laser: a singleparticle classical model”, Lett. Nuovo Cimento 21, 399 (1978)ADSCrossRefGoogle Scholar
  6. 6.
    A. Bambini, A. Renieri and S. Stenholm, “Classical theory of a free-electron laser in a moving frame”, Phys. Rev. A 19, 2013 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    A. Bambini and S. Stenholm, “Quantum description of free electrons in a laser”, Opt. Comm. 30, 391 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    R. Bonifacio and M.O. Scully, “Generalized gain-spread expressions for the free electron laser”, Opt. Comm. 32, 291 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    R. Bonifacio, F. Casagrande and L.A. Lugiato, “Exact one-particle theory of a free-electron laser”, Opt. Comm. (in press)Google Scholar
  10. 10.
    R. Bonifacio, “Coherent states of a free electron laser”, Opt. Comm. 32, 440 (1980)ADSCrossRefGoogle Scholar
  11. 11.
    D.B. McDermott, T.C. Marshall, S.P. Schlesinger, R.K. Parker and V.L. Granatstein, “High-power free-electron laser based on stimulated Raman back scattering”, Phys. Rev. Lett. 41, 1368 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    P. Spangle and R.A. Smith, “Theory of free-electron lasers”, Phys. Rev. A 21, 302 (1980), P. Sprangle, Cha-Mei Tang and W.M. Manheimer, “Nonlinear theory of free-electron lasers and efficiency enhancement” Phys. Rev. A 21, 302 (1980), and referenced quoted therein.ADSCrossRefGoogle Scholar
  13. 13.
    G. Dattoli, “A block-like model of the free electron laser”, Lett. Nuovo Cimento 27, 247 (1980)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    a) R.J. Glauber, “The quantum theory of optical coherence”, Phys. Rev. 130, 2529 (1963); “Coherent and incoherent states of the radiation field” Phys. Rev. 131, 2766 (1963); b) The relevance of these angular momentum coherent states and of Block states has been discussed by G. Dattoli, A. Renieri, F. Romanelli and R. Bonifacio, “On the coherent states of the free electron laser”, Opt. Comm. 34. 240 (1980).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    J. Schwinger, in “Quantum theory of angular momentum; perspectives in physics”, eds. L.C. Biedenharm and H. Van Dam (Academic Press, New York, 1965).Google Scholar
  16. 16.
    R. Bonifacio, Dae M. Kim and M.O. Scully, “Description of a many-atom system in terms of coherent boson states”, Phys. Rev. 187, 441 (1969)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. Bonifacio
    • 1
  • F. Casagrande
    • 1
  • L. A. Lugiato
    • 1
  1. 1.Istituto di Fisica dell’UniversitaMilanItaly

Personalised recommendations