Advertisement

A Free Electron Laser Experiment

  • H. Boehmer
  • M. Zales Caponi
  • J. Munch
Part of the Ettore Majorana International Science Series book series (SLAP, volume 49)

Abstract

A Free Electron Laser (FEL) device is a source of high power, coherent electromagnetic radiation that can be tuned to operate from cm to visible wavelengths. The radiation is generated by scattering an external electromagnetic wave or “pump” from an intense relativistic electron beam. The coherence of the radiation is due in part to the axial self-bunching of the beam in the presence of the pump. The FEL operates in different regimes depending on the magnitude of the macroscopic system parameters. For extremely intense electron beams collective effects may play a dominant role in the dynamics of the system [collective regime]. This is to be contrasted for example with the case of extremely energetic, but low intensity electron beams where single particle effect dominate the behavior [Compton regime]. Other macroscopic parameters that determine the regime of operation include the electron beam energy spread (ΔE), the pump amplitude (Ip) and wavelength (λw), and the length (L) of the system.

Keywords

Free Electron Laser Macroscopic Parameter Efficiency Enhancement Pump Field Beam Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Boehmer, J. Munch, M. Zales Caponi, IEEE Transact, in Nucl. Sc. V 26, 3830 (1979).CrossRefGoogle Scholar
  2. 2.
    M. Zales Caponi, J. Munch, H. Boehmer, Physics of Quantum Electronics, V VII, Ed. by S. Jacobs et.al, Addison Wesley Pub. Co., pg. 523–553, (1980).Google Scholar
  3. 3.
    D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman and T.I. Smith, Phys. Rev. Lett. 38, 892, (1977).ADSCrossRefGoogle Scholar
  4. 4.
    L.R. Elias, W.M. Fairbank, J.M.J. Madey, H.A. Schwettman and T.I. Smith, Phys. Rev. Lett. 36, 717, (1976).ADSCrossRefGoogle Scholar
  5. 5.
    D.B. McDermott, T.C. Marshall, S.P. Schlesinger, R.K. Parker and V.L. Granatstein, Phys. Rev. Lett. 41, 1368 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    R.M. Gilgenbach, T.C. Marshall and S.P. Schlesinger, Phys. Fluids 22, 971 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    P.C. Liewer, T. Lin, J. Dawson, M. Zales Caponi, to be published in Phys. Fl.Google Scholar
  8. 8.
    Phys. of Quantum Electronics, S. Jacobs Ed., Add. Wesley Publ., (1980) (cf. P. Sprangle, C.M. Tang, W.M. Manheimer, Pg. 207–253 or N.M. Kroll, P.L. Morton, M.N. Rosenbluth, pg. 89–145 ).Google Scholar
  9. 9.
    J.E. Rowe, “Nonlinear Electron-Wave Interaction Phenomena,” Academic Press (1965).Google Scholar
  10. 10.
    A.T. Lin, “Enhancement of Electromagnetic Radiation from Free Electron Lasers by Applying a DC Electric Field,” Report #PPG-456, January 1980, Center of Plasma Physics and Fusion Energy, UCLA.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. Boehmer
    • 1
  • M. Zales Caponi
    • 1
  • J. Munch
    • 1
  1. 1.TRW DSSGRedondo BeachUSA

Personalised recommendations