Advertisement

Free Electron Lasers Based Upon Stimulated Raman Backstattering: A Survey

  • T. C. Marshall
Part of the Ettore Majorana International Science Series book series (SLAP, volume 49)

Abstract

In this chapter I discuss a type of Free Electron Laser (FEL) which is based upon stimulated Raman (SR) Backscattering of a magnetostatic pump wave from a cold, dense, relativistic electron beam. Radiation from such a laser1 is of megawatt level and tuneable over the millimeter to far infrared spectrum (∼2mm – 100μ), using an electron beam of “modest” energy (0.5 – 2 MEV). One incentive to develop such a laser is that the production of intense far infrared coherent sources is difficult; conventional lasers are troubled by lack of energy storage, highly selective level excitation, and low efficiency—the latter usually following from a downconversion process which is driven by a powerful CO2 laser pump. Nevertheless, several far infrared lasers—at widely spaced intervals in the spectrum—have achieved noteworthy power output (∼1 MW); as a particular example, consider the CH3F system, which radiates at 496μ, and which is Raman-like,2 The Raman process is a nonlinear optical process requiring multi-photon absorption.

Keywords

Pump Wave Cavity Radiation Free Electron Laser Relativistic Electron Beam Diode Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McDermott, D.B., Marshall, T.C., Schlesinger, S.P., Parker, R.K., and Granatstein, V.L. (1978). Phys. Rev. Lett. 41, 1368.ADSCrossRefGoogle Scholar
  2. 2.
    DeTemple, T.A., (1979). In “Infrared and Submillimeter Waves” (K.J. Button, Ed.) vol. 1, p. 129. Academic Press, N.Y.Google Scholar
  3. 3.
    McDermott, D.B., and Marshall, T.C. (1980). In Physics of Quantum Electronics, ed. Jacobs, Pilloff, Sargent, Scully, and Spitzer (Addison-Wesley, Reading, MA.), Vol. 7, p. 509.Google Scholar
  4. 4.
    Deacon, D.A.G., Elias, L.R., Madey, J.M.J., Ramian, G.J., Schwettman, H.A., and Smith, T.I. (1977). Phys. Rev. Lett. 38, 892ADSCrossRefGoogle Scholar
  5. 5.
    Davidson, R.C. and Uhm, H.S., (1979). Bull. Am. Phys. Soc. 24, 1066.Google Scholar
  6. 6.
    Cary, J.R. and Kwan, T.J., (1979). Bull. Am. Phys. Soc. 24, 1066.Google Scholar
  7. 7.
    Hasegawa, A. (1978). Bell System Tech. J. 57, 3069.Google Scholar
  8. 8.
    Davidson, R.C. (1974). “Theory of Nonneutral Plasmas.” W.A. Benjamin, Inc., Reading, MA., p. 36.Google Scholar
  9. 9.
    Talmadge, S., Marshall, T. C., and Schlesinger, S.P. (1977). Phys. Fluids 20, 974.ADSCrossRefGoogle Scholar
  10. 10.
    Hasegawa, A., Mima, K., Sprangle, P., Szu, H.H., and Granatstein, V.L., (1976). Appl. Phys. Lett. 29, 542.ADSCrossRefGoogle Scholar
  11. 11.
    Gilgenbach, R.M., McDermott, D.B., and Marshall, T. C., (1978). Rev. Sci. Instr. 49, 1098ADSCrossRefGoogle Scholar
  12. 12.
    Pasour, J.A., and Schlesinger, S.P., (1977), Rev. Sci, Instr. 48, 1355.ADSCrossRefGoogle Scholar
  13. 13.
    Sprangle, P., Granatstein, V.L., and Baker, L., (1975), Phys, Rev. A. 12, 1697ADSCrossRefGoogle Scholar
  14. 14.
    Mannheimer, W.M., and Ott, E. (1974). Phys.Fluids 17, 1413ADSCrossRefGoogle Scholar
  15. 15.
    Efthimion, P.C., and Schlesinger, S.P. (1977). Phys. Rev. A. 16, 633.ADSCrossRefGoogle Scholar
  16. 16.
    Motz, H. (1951). J. Appl. Phys. 22, 527.ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Phillips, R.N. (1960). IRE Trans. Elec. Devices ED-7, 231.Google Scholar
  18. 18.
    Marshall, T. C., Talmadge, S., and Efthimion, P. (1977). Appl. Phys. Lett. 31, 320.ADSCrossRefGoogle Scholar
  19. 19.
    Granatstein, V.L., Schlesinger, S.P., Kerndon, M., Parker, R.K., and Pasour, J.A. (1977). Appl. Phys. Lett. 30, 384.ADSCrossRefGoogle Scholar
  20. 20.
    Gilgenbach, R.M., Marshall, T.C., and Schlesinger, S.P. (1979). Phys. Fluids 22, 971.ADSCrossRefGoogle Scholar
  21. 21.
    Gilgenbach, R.M., Marshall, T. C., and Schlesinger, S.P. (1979). Phys. Fluids 22, 1219.ADSCrossRefGoogle Scholar
  22. 22.
    McDermott, D.B., Marshall, T. C., and Schlesinger, S.P. (1978). Comments Plasma Phys. and Contr. Fusion 3, 165.Google Scholar
  23. 23.
    Chen, Y.C., Leheny, R.F., and Marshall, T. C., (1965). Phys. Rev. Lett. 15, 184.ADSCrossRefGoogle Scholar
  24. 24.
    Kneubuhl, F.K., reported in Lasers ’79 Int’l Conf., Orlando, Fla., December 1979, p. 812.Google Scholar
  25. 25.
    Jackson, R., Parker, R., Efthimion, P., Granatstein, V., Sprangle, P., and Smith R. (1979). Bull. Am. Phys. Soc. 24, 1077.Google Scholar
  26. 26.
    Sprangle, P., Physics of Quantum Electronics, S. F. Jacobs, H.S. Pilloff, M. Sargent, M. O. Scully, R. Spitzer, eds. Addision-Wesley, Reading, MA. (1980), Vol. 7, p. 207.Google Scholar
  27. 27.
    Shaw, E.D., and Patel, C.K.N., Physics of Quantum Electronics, S.F. Jacobs, H.S. Pilloff, M. Sargent, M.O. Scully, R. Spitzer, eds. Addison-Wesley, Reading, MA. (1980), vol. 7, p. 665.Google Scholar
  28. 28.
    Walsh, J.E., Physics of Quantum Electronics, S.F. Jacobs, H.S. Pilliff, M. Sargent, M.O. Scully, R. Spitzer, eds. Addison-Wesley, Reading, MA (1980), Vol. 7, p. 255 and 301.Google Scholar
  29. 29.
    Johnston, S. (1979). Bull. Am. Phys. Soc. 24, 1066.Google Scholar
  30. 30.
    Brau, C.A., and Cooper, R.K., Physics of Quantum Electronics, S.F. Jacobs, H.S. Pilloff, M. Sargent, M.O. Scully, R. Spitzer, eds. Addision-Wesley, Reading, MA. (1980), Vol. 7, p. 647.Google Scholar
  31. 31.
    Marshall, T. C., Schlesinger, S.P., and McDermott, D.B. in Advances in Electronics and Electron Physics, C. Marton, ed., vol. 53, Academic Press, N.Y. (1981).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • T. C. Marshall
    • 1
  1. 1.Plasma LaboratoryColumbia UniversityNew YorkUSA

Personalised recommendations