High-Gain Millimeter and Submillimeter Free Electron Lasers

  • V. L. Granatstein
  • P. Sprangle
  • R. K. Parker
Part of the Ettore Majorana International Science Series book series (SLAP, volume 49)

Abstract

The relativistic electron beams produced by pulse-line accelerators (induction Linacs1, IRED accelerators2, and radial line accelerators3) can have suffiicent intensity to shift the laser interaction to the regime where collective electron oscillations participate in the wave amplification process. Free electron lasers with collective interactions can have sufficient gain so that practical amplifiers can be developed in addition to oscillators. Also there is potential for high efficiency in converting electron kinetic energy to photon energy. The electron energy characteristic of pulse-line accelerators (roughly 1–10 MeV) is relatively modest and lasers employing these acclerators are expected to operate in the wavelength range extending from millimeters to the near infrared. Electron beam pulse duration 10 ns – 10 μs is much longer than with r.f. accelerators, so that linewidth of the radiation may be compatible with good coherence even with operation in the millimeter wave regime.

Keywords

Coherence Stim Univer Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    e.g., N.C. Christofilos, R.E. Hester, W.A.S. Lamb, D.D. Reagan, W.A. Sherwood, and R.E. Wright, Rev. Sci. Instrum. 35, 886 (1964); R. Avery, G. Behrsing, W.W. Chupp, A. Faltens, E.C. Hartwig, H.P. Hernandez, C. MacDonald, J.R. Meneghetti, R.G. Nemetz, W. Popenuck, W. Salsig, and D. Vanecek, IEEE Trans. Nucl. Sci. NS18, 479 (1971); and R.E. Hester, D.G. Bubp, J.C. Clark, A.W. Chesterman, E.G. Cook, W.L. Dexter, T.J. Fessenden, L.I. Reginato, T.T. Yokota and A.A. Faltens, IEEE Trans. Nucl. Sci. NS26, 4180 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    e.g., B. Bernstein, and I. Smith, IEEE Trans. Nucl. Sci., NS20, 294 (1973); and R.K. Parker and M. Ury, IEEE Trans. Nucl. Sci., NS22, 983 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    e.g., A.I. Pavlovskii and V.S. Bosamykin, Sov. At. Energy 37, 942 (1974); A.I. Pavlovskii, V.S. Bosamykin, G.D. Kuleshov, A.I. Gerasimov, V.A. Tananakin, and A,P. Klementev, Sov. Phys. Dokl. 20, 441 (1975); D. Eccleshall and J.K. Temperley, J. Appl. Phys. 49, 3649 (1978); and I. Smith, Rev. Sci. Instrum. 50, 714 (1979).CrossRefGoogle Scholar
  4. 4.
    P. Sprangle and V.L. Granatstein, “Stimulated Cyclotron Resonance Scattering and Production of Powerful Submillimeter Radiation,” Appl. Phys. Lett. 25, pp. 377–379 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    P. Sprangle, V.L. Giranatstein and L. Baker, “Stimulated Collective Scattering from a Magnetized Relativistic Electron Beam,” Phys. Rev. A12, pp. 1697–1701 (1975).ADSGoogle Scholar
  6. 6.
    V.I. Miroshnichenko, “Stimulated Coherent Scattering of an Electromagnetic Wave by a Relativistic Electron Beam in a Magnetic Field,” Sov. Tech. Phys. Lett. 1, pp. 453–454 (1975).Google Scholar
  7. 7.
    N.M. Kroll and W.A. McMullin, “Stimulated Emission from Relativistic Electons Passing through a Spatially Periodic Transverse Magnetic Field,” Phys. Rev. A17, pp. 300–308 (1978).ADSGoogle Scholar
  8. 8.
    A. Hasegawa, “Free Electron Laser,” Bell System Tech. J. 57, pp. 3069–3089 (1978).Google Scholar
  9. 9.
    I.A. Bernstein and J.L. Hirshfield, “Amplification on a Relativistic Electron Beam in a Spatially Periodic Transverse Magnetic Field,” Phys. Rev. A20, pp. 1661–1670 (1979).ADSGoogle Scholar
  10. 10.
    P. Sprangle and A.T. Drobot, “Stimulated Backscattering from Relativistic Unmagnetized Electron Beams, J. Appl. Phys. 50, pp. 2652–2661 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    P. Sprangle and R.A. Smith, “The Theory of Free Electron Lasers,” Naval Research Laboratory Memorandum Report 4033, 1979; also Phys. Rev. A21, pp. 293–301 (1980).ADSGoogle Scholar
  12. 12.
    T. Kwan, J.M. Dawson and A.T. Lin, “Free Electron Laser,” Phys. Fluids 20, pp. 581–588 (1977).ADSCrossRefGoogle Scholar
  13. 13.
    A.T. Lin and J.M. Dawson, “High Efficiency Free Electron Laser,” Phys. Rev. Lett. 42, pp. 1670–1673 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    P. Sprangle, C.M. Tang and W.M. Manheimer, “Non-Linear Theory of Free Electron Lasers and Efficiency Enhancement,” Phys. Rev. A21, pp. 302–318 (1980); also “Non-Linear Formulation and Efficiency Enhancement of Free Electron Lasers,” Phys. Rev. Lett. 43, pp. 1932-1936 (1979).ADSGoogle Scholar
  15. 15.
    V.L. Granatstein and P. Sprangle, “Mechanism for Coherent Scattering of Electromagnetic Waves from Relativistic Electron Beams,” IEEE Trans. MIT25, pp. 545–550 (1977).Google Scholar
  16. 16.
    A. Gover and A. Yariv, “Collective and Single-Electron Interactions of Electron Beams with Electromagnetic Waves and Free-Electron Lasers,” Appl. Phys. 16, pp. 121–133 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    P. Sprangle, R.A. Smith and V.L. Granatstein, “Free Electron Lasers and Stimulated Scattering from Relativistic Electron Beams,” Infrared and Millimeter Waves, Vol. 19 ed. K.J. Button, Academic Press, New York, 1979, pp. 279–327.Google Scholar
  18. 18.
    T.C. Marshall, S.P. Schlesinger, and D.B. McDermot, “The Free Electron Laser: A High Power Sub-Millimeter Radiation Source,” in Advances in Electronics and Electron Physics, Vol. 53, ed. L. Marton, Academic Press, New York, 1980 (to be published).Google Scholar
  19. 19.
    V.L. Bratman, N.S. Ginzburg and M.I. Petelin, “Ubitrons and Scattrons,” in Relativistic High Frequency Electronics, ed. A.V. Gaponov, Academy of Sciences of the U.S.S.R., Institute of Applied Physics, Gorkifi, 1979, pp. 217–248 (in Russian).Google Scholar
  20. 20.
    V.L. Granatstein, S.P. Schlesinger, M. Herndon, R.K. Parker, and J.A. Pasour, “Production of Megawatt Submillimeter Pulses by Stimulated Magneto-Raman Scattering,” Appl. Phys. Lett. 30, pp. 384–386 (1977).ADSCrossRefGoogle Scholar
  21. 21.
    T.C. Marshall, S. Talmadge and P. Efthimion, “High-Power Millimeter Radiation from an Intense Relativistic Electron-Beam Device,” Appl. Phys. Lett. 31, pp. 320–322 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    R.M. Gilgenbach, T.C. Marshall, and S.P. Schlesinger, “Spectral Properties of Stimulated Raman Radiation from an Intense Relativistic Electron Beam,” Phys. Fluids 22, pp. 971–977 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    D.B. McDermott, T.C. Marshall, S. P. Schlesinger, R.K. Parker, and V.L. Granatstein, “High-Power Free-Electron Laser Based on Stimulated Raman Backscattering,” Phys. Rev. Lett. 41, 1368 (1978).ADSCrossRefGoogle Scholar
  24. 24.
    P.G. Zhukov, V.S. Ivanov, M.S. Rabinovich, M.D. Raizer, and A.A. Ruchadze, “Stimulated Compton Scattering from Relativistic Electron Beam,” Proc. of the Third Internat’l Topical Conf. on High Power Electron and Ion Beam Research and Technology, Novosibirsk, 3–6 July 1979 (preprint).Google Scholar
  25. 25.
    R.E. Shefer, K.K. Jacobs, and G. Bekefi, “Quasistatic Pump for Free Electron Lasers,” Bull, Am. Phys., Soc. 24, 1067 (1979).Google Scholar
  26. 26.
    H. Boehmer, J.M. Buzzi, H.J. Doucet, B. Etlicher, H. Lamain, and C. Rouille, “Resonance Effect on Relativistic Electron Beam Propagation for Collective Free Electron Laser,” Bull. Am. Phys. Soc. 24, 1066 (1979).Google Scholar
  27. 27.
    H. Boehmer, J. Munch, and M.Z. Caponi, “Free Electron Laser Experiment with a Spatially Varying Pump Amplitude,” Bull. Am. Phys. Soc. 24, 1066 (1979).Google Scholar
  28. 28.
    Private discussions with J. Hirshfield.Google Scholar
  29. 29.
    R.H. Jackson, R.K. Parker, and V.L. Granatstein, “Beam Quality Studies for Intense Beam Free Electron Lasers,” Digest of Fourth Internatfl Conf. on Infrared and Millimeter Waves and Their Applications, Miami, 10-15 December 1979, IEEE CAT. No. 79 CH 1384–7 MTT, pp. 96–97.Google Scholar
  30. 30.
    P. Sprangle and C.M. Tang, “Three-Dimensional, Non-Linear Theory of the Free Electron Laser,” Naval Research Laboratory Memorandum Report 4280 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • V. L. Granatstein
    • 1
  • P. Sprangle
    • 1
  • R. K. Parker
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations