Storage Ring Operation of the Free Electron Laser

  • Giuseppe Dattoli
  • Angelo Marino
  • Alberto Renieri
Part of the Ettore Majorana International Science Series book series (SLAP, volume 49)


These lectures are concerned with the steady state operation mode of a free electron laser (FEL), operating in a storage ring (SR). In Section 2 the equations of motion of an electron in a “standard” SR are derived. Section 3 is devoted to the study of the optimization of the electron beam (e.b.) parameters for FEL operation. Finally in Sect. 4 the amplifier and oscillator behavior of an FEL in a storage ring is investigated.


Storage Ring Energy Spread Free Electron Laser Laser Power Density Bunch Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a comprehensive review of problems relative to the electron storage ring, see M. Sands, The Physics of the Electron Storage Rings, Proc. Int. School “E. Fermi”, Course XLVI, Ed. B. Touschek, Academic Press (1971)Google Scholar
  2. 2.
    E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    H. Bruck, «Accelerateurs Circulaires de Particules», Press Universitaire de France, Paris (1966)Google Scholar
  4. 4.
    M.H. Blewett Ed. “Theoretical Aspects of the Behaviour of Beams in Accelerators and Storage Rings”, CERN 77–13, Geneva (1977)Google Scholar
  5. 5.
    A.A. Kolomensky and A.N. Lebedev, “Theory of Cyclic Accelerators” North-Holland, Amsterdam (1966)Google Scholar
  6. 6.
    See, for example, “Wiggler Magnets”-Stanford Synchrotron Radiation Project, Report 77/05 — Stanford (California) (1977)Google Scholar
  7. 7.
    A. Kutton, Part. Accel. 7, 177 (1976)Google Scholar
  8. 8.
    B.M. Kincaid, J. Appl. Phys. 48, 2684 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    J.M.J. Madey, J. Appl. Phys. 42, 1906 (1971) L.R. Elias,W.M. Fairbank, J.M.J. Madey, H.A. Schwettman and T.I. Smith, Phys. Rev. Lett. 36, 717 (1976) D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman and T.I. Smith, Phys. Rev. Lett. 38, 892 (1977)ADSCrossRefGoogle Scholar
  10. 10.
    R. Barbini, G. Dattoli, T. Letardi, A. Marino, A. Renieri and G. Vignola, IEEE Trans. Nucl. Sci. NS26, 3836 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    L. Landau and E. Lifshitz “The Classical Theory of Fields”, Pergamon Press, Oxford, Chapter 9 (1961)Google Scholar
  12. 12.
    K. Robinson, Phys. Rev. 111, 373 (1958)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    See, for example, I. Prigogine “Non Equilibrium Statistical Mechanics”, Interscience Publishers, 64 (1962)Google Scholar
  14. 14.
    R.H. Helm, M.J. Lee and P.L. Morton, Proc. of the 1973 Particle Accelerator Conference, San Francisco (California) (1973)Google Scholar
  15. 15.
    A. Bambini, A. Renieri, Proc. VII Course Int. School Quantum Electronics, Le Pianore 1977, Plenum Press (1977), Nuovo Cimento Lett. 21, 399 (1978) A. Bambini, A. Renieri and S. Stenholm, Phys. Rev. A 19, 2013 (1979) G. Dattoli and A. Renieri, Nuovo Cimento Lett. 24, 121 (1979) G. Dattoli and A. Renieri,CNEN Report 79.37/p, Centro di Frascati, Frascati, (Italy)ADSCrossRefGoogle Scholar
  16. 16.
    G. Dattoli, A. Marino and A. Renieri, “On the Theory of the Free Electron Laser”, these ProceedingsGoogle Scholar
  17. 17.
    J.D. Jackson “Classical Electrodynamics”, J. Wiley, New York, Chapter 15.5 (1975)zbMATHGoogle Scholar
  18. 18.
    A. Renieri, CNEN Report 77.30, Centro di Frascati, Frascati (Italy) (1977)Google Scholar
  19. 19.
    A. Renieri “The Free Electron Laser: The Storage Ring Operation” Proc. Int. School of Phys. “E. Fermi” — 2nd Course 1978, Ed. by A. Marino and C. Pellegrini, Varenna 1978 — LXXIV SIF), to be be publishedGoogle Scholar
  20. 20.
    A. Renieri, Nuovo Cimento B 53, 160 (1979) and IEEE Trans. Nucl. Sci. NS-26, 3827 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    A. Renieri, CNEN Report 77.33, Centro di Frascati, Frascati (Italy)Google Scholar
  22. 22.
    G. Dattoli and A. Renieri, Nuovo Cimento B 59, 1 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    D.A.G. Deacon and J.M.J. Madey, Appl. Phys. 19, 295 (1979) D.A.G. Deacon “Theory of the Isochronous Storage Ring Laser” Report HEPL 854 (1979), Stanford University, Stanford (California) D.A.G. Deacon and J.M.J. Madey, Phys. Rev. Lett. 44, 449 (1980) N.M. Kroll, P. Morton and M.N. Rosenbluth, SRI Technical Report JSR-79–01 (1980), SRI International, Arlington (Virginia) C A. Brau, IEEE J. Quant. Electron. QE-16, 335 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    L.R. Elias, J.M.J. Madey and T.I. Smith, “One Dimensional Monte Carlo Analysis of a Free Electron Laser in a Storage Ring”, Stanford High Energy Physics Laboratory Report HEPL 824 (1978)Google Scholar
  25. 25.
    H. Al-Abawi, F.A. Hopf, G.T. Moore and M.O. Scully, Opt. Commun. 30. 235 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    F.A. Hopf, P. Meystre, M.O. Scully and W.L. Luisell, Opt. Commun. 18, 413 (1976) and Phys. Rev. Lett. 37, 1342 (1976) H. Al-Abawi, F.A. Hopf and P. Meystre, Phys. Rev. A 16, 666 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    S.A. Mani “A Study to Design a Free Electron Laser Experiment-Volume IV — FEL Theory”, WJSA-FTR-79–135, W.J. Schafer Associates, Inc., Wakefield (Massachusetts) (1979)Google Scholar
  28. 28.
    C. Pellegrini, Proc. of the Workshop in “The Possible Impact of Free Electron Lasers on Spectroscopy and Chemistry” Ed. by G. Scoles, Riva del Garda (Italy), 1 (1979) A. Renieri, ibidem, 28Google Scholar
  29. 29.
    See, for example, M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 567 (1970)Google Scholar
  30. 30.
    C. Bovet, G.S. Cohen, R. Gouiran, I. Gumowski, K.H. Reich and W.M. Saxon, “A Selection of Formulae and Data Useful for the Design of A.G. Synchrotrons” MPS-SI (Int. DL/68–3) CERN, Geneva (1968)Google Scholar
  31. 31.
    H. Kogelnick and T. Li, Proc. IEEE 54, 1312, Sect. 3.2 (1966)CrossRefGoogle Scholar
  32. 32.
    G.M. Zaslavskii and B.V. Chirikov, Sov. Phys. Usp. 14, 549 (1972)MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    J.M.J. Madey and D.A.G. Deacon, in Cooperative Effects in Matter and Radiation, Plenum Press, New York, N.Y., 313 (1977)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Giuseppe Dattoli
    • 1
  • Angelo Marino
    • 1
  • Alberto Renieri
    • 1
  1. 1.Comitato Nazionale Energia NucleareCentro di FrascatiFrascati, RomeItaly

Personalised recommendations