Advertisement

A Unified Linear Formulation and the Operating Parameters of Cerenkov-Smith-Purcell, Bremsstrahlung and Compton Scattering Free Electron Lasers

  • A. Gover
  • P. Sprangle
Part of the Ettore Majorana International Science Series book series (SLAP, volume 49)

Abstract

This article discusses in a comparative way the main operating parameters of various free electron lasers, providing a useful tool for laser design, and for comparative evaluation of the various lasers. A general formulation is presented for the excitation of electromagnetic waves in any FEL structure. It is shown that any linear response theory for the electron beam current results for all FELs similar gain-dispersion relation which differs only by a single coupling parameter К. The different gain regimes which are common to all FELs are delineated. We find the small signal gain in all the gain regimes (warm and cold beam, low or high gain, single electron, collective or strong coupling interaction). The laser gain parameter, radiation extraction efficiency, maximum power generation and spectral width are given and compared in the various kinds of FELs and gain regimes. The maximum power generation of all FELs (except Compton-Raman scattering) is shown to be limited by an interaction region width parameter. This parameter and consequently the laser power is larger relativistic limit by a factor ~ γo in all bremsstrahlung FELS in comparison to Cerenkov- Smith-Purcell FELs.

Keywords

Electron Beam Free Electron Laser Space Charge Effect Gain Parameter Space Charge Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Motz, “Applications of the radiation from fast electron beams”, J. Appl. Phys. 22, 527–535 (1951).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    J. M. Madey, “Stimulated Emission of bremsstrahlung in a periodic magnetic field”, Appl. Phys. 42, 1906–1913 (1971).Google Scholar
  3. 3.
    F. A. Hopf, P. Meystre, M. O. Scully and W. H. Louisell, “Classical theory of free electron laser”, Phys. Rev. Lett. 37, 1342–1345 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    N. M. Kroll and W. A. McMullin, “Stimulated emission from relativistic electrons passing through a spatially periodic transverse magnetic field”, Phys. Rev. A17, 300–308 (1978).ADSGoogle Scholar
  5. 5.
    W. B. Colson, “One body analysis of free electron lasers”, Physics of Quantum Electronics Vol. 5, p. 157–196 (Ed. S. Jacobs, M. Sargent III and M. Scully) Addison-Wesley Pub. (1978).Google Scholar
  6. 6.
    T. Kwan, J. M. Dawson and A. T. Lin, “Free electron laser”, Phys. of Fluids 20, 581–588 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    A. Hasegawa, “Free electron laser”, Bell System Tech. J. 57, 3069–3089 (1978).Google Scholar
  8. 8.
    A. Bambini, A. Renieri, S. Stenhalm, “Classical theory of a free electron laser in a moving frame”, Phys. Rev. A, 19, 2013–2025 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    I. Bernstein and J. L. Hirshfield, “Amplification on a relativistic electron beam in a spatially periodic transverse magnetic field”, Phys. Rev. A-20, 1661–1670 (1979).ADSGoogle Scholar
  10. 10.
    P. Sprangle, R. Smith and V. L. Granatstein, Infrared and Millimeter Waves, Vol. 1, p. 279 (Ed. K. J. Button) Academic Press (1979); P. Sprangle, R. Smith “Theory of free electron lasers”, Phys. Rev. A21, 293–301 (1980).Google Scholar
  11. 11.
    A. Gover, “A free electron laser based on periodic longitudinal electrostatic bremsstrahlung”, Physics of Quantum Electronics Vol. 7, 701–728 (Eds. S. Jacobs, H. Pilloff, M. Sargent III and M. Scully) Addison Wesley Pub. (1980); A. Gover, “An analysis of stimulated longitudinal electrostatic bremsstrahlung in a free electron laser structure”, to be published in Appl. Phys. 23 (1980).Google Scholar
  12. 12.
    G. Bekefi and R. E. Shefer, “Stimulated raman scattering by an intense relativistic electron beam subjected to a rippled electric field”, 1979 IEEE International Conf. on Plasma Science, Montreal, Canada, Conf. Record, p. 12, 13; G. Bekefi and R. E. Shefer, same title, J. Appl. Phys. 50, 5158–5164 (1979).Google Scholar
  13. 13.
    R. H. Pantell, G. Soncini and H. E. Puthoff, “S-9 stimulated photon-electron scattering”, IEEE J. QE-4, 905–907 (1968).CrossRefGoogle Scholar
  14. 14.
    V. P. Sukhatine and P. W. Wolff, “Stimulated Compton scattering as a radiation source — theoretical limitations”, J. Appl. Phys., 44, pp. 2331–2334 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    V. A. Dubrovskii, N. B. Lerner and B. G. Tsikin, “Theory of Compton laser”, Sov. J. Quant. Electron., 5, 1248–1253 (1976).ADSCrossRefGoogle Scholar
  16. 16.
    P. Sprangle, A. T. Drobot, “Stimulated backscattering from relativistic unmagnetized electron beams”, J. Appl. Phys. 50, 2652–2661 (1979).ADSCrossRefGoogle Scholar
  17. 17.
    A. Gover and A. Yariv, “Collective and single electron interaction of electron beams with electromagnetic waves, and free electron lasers”, Appl. Phys. 16, 121–138 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    J. E. Walsh, T. C. Marshall, M. R. Mross and S. P. Schlesinger, “Relativistic electron beam generated coherent sub-millimeter wavelength Cerenkov Radiation”, IEEE Transc. M.T.T.-25, 561–563 (1977); J. E. Walsh, “Stimulated Cerenkov Radiation”, Physics of Quantum Electronics Vol. 5, 357–380 (Eds. J. Jacobs, M. Sargent III and M. Scully) Addison Wesley Pub. (1978).Google Scholar
  19. 19.
    A. Yariv, C. C. Shih, “Amplification of radiation by relativistic electrons in spatially periodic optical waveguides”, Optics Commun. 24, 233–236 (1978).ADSCrossRefGoogle Scholar
  20. 20.
    A. Gover, Z. Livni, “Operation regimes of Cerenkov-Smith-Purcell free electron lasers and T. W. Amplifiers”, Optics Commun. 26, 375–380 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    Z. Livni, A. Gover, Linear Analysis and Implementation Considerations of Feee Electron Lasers Based on Cerenkov and Smith Purcell Effects, Tel Aviv University, School of Engineering, Quantum Electronics Lab. Scientific Report 1979/81 (AFOSR 77-3445).Google Scholar
  22. 22.
    S. J. Smith, E. M. Purcell, “Visible light from localized surface charges moving across a grating”, Phys. Rev. 92, 1069 (1953).ADSCrossRefGoogle Scholar
  23. 23.
    F. S. Rusin, G. D. Bogomolov, “Orotron — an electronic oscillator with an open resonator and reflecting grating”, Proc. of the IEEE, 57, 720–722 (1968).CrossRefGoogle Scholar
  24. 24.
    V. K. Korneyenkov, V. P. Shestopalov, “A generation of diffraction radiation with a quasioptical energy output and a fixed distance between the optical cavity mirrors”, Radio Eng. Electr. Phys. 22, 148–149 (1977).Google Scholar
  25. 25.
    K. Mizuno, S. Ono, Y. Shibata, “Two different mode interactions in an electron tube with a Fabri-Perot resonator — the Ledatron”, IEEE Transac. ED-20, 749–752 (1973).CrossRefGoogle Scholar
  26. 26.
    R. M. Phillips, “The Ubitron — a high power millimeter wave TWT”, IRE Transac. ED-7, 231 (1960).Google Scholar
  27. 27.
    L. A. Vaynshtain, Electromagnetic Waves, Sovietskoye Radio Moskow (1957) (Russian).Google Scholar
  28. 28.
    M. R. Mross, T. C. Marshall, D. E. Efthimion, S. P. Schlesinger, “Submillimeter wave generation through stimulated scattering with an intense relativistic electron beam and zero frequency pump”, 2nd International Conf. on Submillimeter Waves, Puerto Rico, Dec. 1976, Conf. Digest p. 28.Google Scholar
  29. 29.
    B. D. Fried, S. D. Conte, The Plasma Dispersion Function, Acaedemic Press, New York (1971).Google Scholar
  30. 30.
    J. R. Pierce, Travelling Wave Tubes, Van Nostrand, Princeton (1950).Google Scholar
  31. 31.
    W. H. Louisell, J. F. Lam, D. A. Copeland, “Effect of space charge on free electron laser gain”, Phys. Rev. A18, 655–658 (1978).ADSGoogle Scholar
  32. 32.
    P. Sprangle, C. M. Tang, W. M. Manheimer, “The nonlinear theory of free electron laser and efficiency enhancement”, Physics of Quantum Electronics Vo. 7, 207–255, (Eds. S. Jacobs, H. Pilloff, M. Sargent III and M. Scully) Addison-Wesley Pub. (1980); P. Sprangle, C. M. Tang, W. M. Manheimer, “Nonlinear theory of free electron lasers and efficiency enhancement”, Phys. Rev. A21, 302-318 (1980).Google Scholar
  33. 33.
    N. M. Kroll, P. L. Morton, M. N. Rosenbluth, “Variable parameter free electron laser”, Physics of Quantum Electronics Vol. 7, 89–112 (Eds. S. Jacobs, H. Pilloff, M. Sargent III and M. Scully) Addison Wesley Pub. (1980).Google Scholar
  34. 34.
    P. A. Sprangle, V. L. Granatstein, L. Baker, “Stimulated collective scattering from a magnetized relativistic electron beam”, Phys. Rev. A-12, 1697–1701 (1975).ADSGoogle Scholar
  35. 35.
    D. B. McDermott, T. C. Marshall, “The collective free electron laser”, Physics of Quantum Electronics Vo. 7, 509–522 (Eds. S. Jacobs, H. Pilloff, M. Sargent III and M. Scully) Addison-Wesley Pub. (1980).Google Scholar
  36. 36.
    D. B. McDermott, T. C. Marshall, S. P. Schlesinger, R. K. Parker, V. L. Granatstein, “High power free electron laser based on stimulated Raman back-scattering”, Phys. Rev. Lett. 41, 1368–1371 (1978).ADSCrossRefGoogle Scholar
  37. 37.
    L. R. Elias, “High power, cw, tuneable (uv through ir) free electron laser using low energy electron beams”, Phys. Rev. Lett. 42, 977–981 (1979).ADSCrossRefGoogle Scholar
  38. 38.
    F. A. Hopf, M. Meystre, M. O. Scully, W. H. Louisell, “Strong signal theory of a free electron lasers”, Phys. Rev. Lett. 37. pp. 1342–1345 (1976).ADSCrossRefGoogle Scholar
  39. 39.
    F. A. Hopf. P. Meystre, G. T. Moore, M. O. Scully, Nonlinear theory of free electron lasers”, Physics of Quantum Electronics Vol. 5, pp. 41–114 (Eds. S. Jacobs, M. Sargent III and M. Scully) Addison Wesley Pub. (1978).Google Scholar
  40. 40.
    A. Yariv, Quantum Electronics, John Wiley, New York (1975).Google Scholar
  41. 41.
    V. L. Granatstein, S. P. Schlesinger, M. Herndon, R. K. Parker, J. A. Pasour, “Production of megawatt submillimeter pulses by stimulated magneto-Raman scatterin-”, Appl. Phys. Lett. 30, 384–386 (1977).ADSCrossRefGoogle Scholar
  42. 42.
    L. R. Elias, W. Fairbank, J. Madey, H. A. Schwettman, T. Smith, “Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field”, Phys. Lett. 36, pp. 717–720 (1976).CrossRefGoogle Scholar
  43. 43.
    A. Gover, unpublished.Google Scholar
  44. 44.
    J. Madey, Lecture in the International School of Quantum Electronics, ERICE, Sicily, (Aug. 1980).Google Scholar
  45. 45.
    D. Pronitz, A. Szoke and V. K. Neil, “One dimensional computer simulation of the variable wiggler free electron laser”, Physics of Quantum Electronics Vol. 7, 751–588 (Eds. S. Jacobs, H. Pilloff, M. Sargent III and M. Scully); S. A. Mani, “Free electron laser interaction in a variable pitch wiggler” (ibid pp. 589–622); W. H. Louisell, C. D. Cantrell, W. A. Wegener, “Single-particle approach to free electron lasers with tapered wigglers” (ibid pp. 623–646); C A. Brau and R. K. Cooper, “Variable wiggler optimization”, (ibid pp. 623–646).Google Scholar
  46. 46.
    A. Renieri Report 77.33 CNEN-Centro di Frascati, Edizione Scientifiche C. P. 65, Frascati, Rome, Italy (1977); L. R. Elias, J.M.M. Madey, T. I. Smith, Stanford High Energy Physics Lab Report HEPL-824 (1978), to be published in Appl. Phys.Google Scholar
  47. 47.
    A. Gover, “A predicted effect of mode cooperation and “white light lasing” in warm beam free electron lasers”, to be published in Optics Letters Dec. (1980).Google Scholar
  48. 48.
    J. Madey, R. Taber, “Equations of motion for a free electron laser with a transverse gradient”, Physics of Quantum Electronics Vol. 7, pp. 741–778 (Eds. J. Jacobs, H. Pilloff, M. Sargent and M. Scully) Addison Wesley Pub. (1980).Google Scholar
  49. 49.
    P. Sprangle and C. M. Tang, “Three dimensional nonlinear theory of the free electron laser”, NRL Memorandum Report 4280 (1980); to be published in Phys. Rev. Lett.Google Scholar
  50. 50.
    J. D. Jackson, Classical Electrodynamics, John Wiley & Sons Inc. (1975).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • A. Gover
    • 1
    • 2
  • P. Sprangle
    • 3
  1. 1.Faculity of EngineeringTel-Aviv UniversityIsrael
  2. 2.JaycorAlexandriaUSA
  3. 3.N.R.L.Plasma Phys. DivisionUSA

Personalised recommendations