Skip to main content

Part of the book series: Environmental Science Research ((ESRH,volume 28))

  • 68 Accesses

Abstract

Presently there are important clinical, occupational and environmental needs for assays to estimate somatic mutation rates in human individuals. These methods are based on the enumeration of rare cells which present a variant phenotype as a result of somatic mutations having occurred in the DNA of single structural genes in precursor cells. To identify and quantitate such cells, an efficient and specific selection method must be employed; either clonogenic assay of mutant cells or immunologic detection of mutant gene products. Also, there must be an independent means for validating that the identified cells are, in fact, structural gene mutants, e.g., maintenance of the mutant phenotype under non-restrictive conditions or direct biochemical demonstration of the presence of a variant protein. In this paper, I will describe two assay systems we are developing based on high speed sorter detection of immunologically identified mutant human erythrocytes. Both take advantage of the ability of the flow sorter to rapidly screen large numbers of cells to enumerate and sort rare, presumptively mutant, cells labeled with fluorescent antibodies.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48 with the financial support of the National Institute of Environmental Health Sciences Interagency Agreement No. 222401-ES-00060 and the Environmental Protection Agency, Grant No. R808642-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Th. Papayannopoulou, T. C. McGuire, G. Lim, E. Garzel, P. E. Nute, and G. Stamatoyannopoulos, Identification of Haemoglobin S in Red Cells and Normoblasts, Using Fluorescent Anti-Hb S Antibodies, Brit. J. Haemat., 34:25–31 (1976).

    Article  Google Scholar 

  2. Th. Papanannopoulou, G. Lim, T. C. McGuire, V. Ahern, P. E. Nute, and G. Stamatoyannopoulos, Use of Specific Fluorescent Antibodies for the Identification of Hemoglobin C in Erythrocytes, Amer. J. Hemat., 2:105–112 (1977).

    Article  Google Scholar 

  3. G. Stamatoyannopoulos, Possibilities for Demonstrating Point Mutations in Somatic Cells, as Illustrated by Studies of Mutant Hemoglobins, in: Genetic Damage in Man Caused by Environmental Agents, K. Berg, ed., pp. 49–62, Academic Press, New York (1979).

    Google Scholar 

  4. K. Wang and F. M. Richards, Reaction of Dimethy1–3,3-dithiobispropiomimidate with Intact Human Erythrocytes, J. Biol. Chem., 250:6622–6626 (1975).

    Google Scholar 

  5. W. L. Bigbee, E. W. Branscomb, H. B. Weintraub, Th. Papayannopoulou, and G. Stamatoyannopoulos, Cell Sorter Immunofluorescence Detection of Human Erythrocytes Labeled in Suspension with Antibodies Specific for Hemoglobins S and C, J. Immunol. Meth., 45:117–127 (1981).

    Article  Google Scholar 

  6. J. J. Aràgon, J. E. Feliu, R. A. Frenkel, and A. Sols, Permeabilization of Animal Cells for Kinetic Studies of Intracellular Enzymes: In situ Behavior of the Glycolytic Enzymes of Erythrocytes, Proc. Natl. Acad. Sci. (USA), 77:6324–6328 (1980).

    Article  ADS  Google Scholar 

  7. H. W. Goedde, H.-G. Benkmann, and L. Hirth, Ultrathin-Layer Isoelectric-focusing for Rapid Diagnosis of Protein Variants, Hum. Genet., 57, 434–436 (1981).

    Article  Google Scholar 

  8. S. I. O. Anyaibe and V. E. Headings, Identification of Inherited Protein Variants in Individual Erythrocytes, Biochem. Genet., 18:455–463 (1980).

    Article  Google Scholar 

  9. J. A. Berzofsky, G. Hicks, J. Fedorko, and J. Minna, Properties of Monoclonal Antibodies Specific for Determinants of a Protein Antigen, Myoglobin, J. Biol. Chem., 255:11188–11191 (1980).

    Google Scholar 

  10. G. Stamatoyannopoulos, D. Lindsley, Th. Papayannopoulos, M. Farquhar, M. Brice, P. E. Nute, G. R. Serjeant, and H. Lehmann, Mapping of Antigenic Sites on Human Haemoglobin by Means of Monoclonal Antibodies and Haemoglobin Variants, Lancet, ii: 952–954 (1981).

    Article  Google Scholar 

  11. H. Furthmayer, Structural Analysis of a Membrane Glycoprotein: Glycophorin A, J. Supramol. Struct., 7:121–134 (1977).

    Article  Google Scholar 

  12. C. G. Gahmberg, M. Jokinen, and L. C. Andersson, Expression of the Major Red Cell Sialoglycoprotein, Glycophorin A, in the Human Leukemic Cell Line K562, J. Biol. Chem., 254, 7442–7448 (1979).

    Google Scholar 

  13. H. Furthmayer, Structural Comparison of Glycophorins and Immunochemical Analysis of Genetic Variants, Nature, 271:519–524 (1978).

    Article  ADS  Google Scholar 

  14. D. Pious and C. Soderland, HLA Variants of Cultured Human Lymphoid Cells: Evidence for Mutatinal Origin and Estimation of Mutation Rate, Science, 197:769–771 (1977).

    Article  ADS  Google Scholar 

  15. P. Kavathas, F. H. Bach, and R. DeMars, Gamma Ray-Induced Loss of Expression of HLA and Glyoxalase I Alleles in Lymphoblastoid Cells, Proc. Natl. Acad. Sci. (USA), 77:4251–4255 (1980).

    Article  ADS  Google Scholar 

  16. P. A. W. Edwards, Monoclonal Antibodies that Bind to the Human Erythrocyte-Membrane Glycoproteins Glycophorin A and Band 3, Biochem. Soc. Trans., 8:334–335 (1980).

    Google Scholar 

  17. P. N. Dean and D. Pinkel, High Resolution Dual Laser Flow Cytometry, J. Histochem. Cytochem., 26:622–627 (1978).

    Article  Google Scholar 

  18. M. J. A. Tanner and D. J. Anstee, The Membrane Change in En(a-) Human Erythrocytes, Biochem. J., 153, 271–277 (1976).

    Google Scholar 

  19. H. Furthmayr, M. N. Metaxas, and M. Metaxas-Bühler, M(g) and M(c): Mutations within the Amino-Terminal Region of Glycophorin A, Proc. Natl. Acad. Sci. (USA), 78:631–635 (1981).

    Article  ADS  Google Scholar 

  20. W. Dahr, M. Kordowicz, K. Beyreuther, and J. Krüger, The Amino-Acid Sequence of the M(c)-Specific Major Red Cell Membrane Sialoglyoprotein — an Intermediate of the Blood Group M- and N-Active Molecules, Hoppe-Seyler’s Z. Physiol. Chem., 362:363–366 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Bigbee, W.L., Branscomb, E.W., Jensen, R.H. (1983). Counting of RBC Variants Using Rapid Flow Techniques. In: de Serres, F.J., Sheridan, W. (eds) Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk. Environmental Science Research, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3739-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3739-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3741-6

  • Online ISBN: 978-1-4613-3739-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics