Skip to main content

Part of the book series: Environmental Science Research ((ESRH,volume 28))

Abstract

The heterozygous and homozygous effects of mutations recovered from a biochemical screen of mouse samples are described. Of the total of 28 electrophoretically detected mutations only one, a Pgm-2 mobility mutation appears to have caused a change to a previously known allelic form. All but one electrophoretically detected allele have been shown to be homozygous viable. Two mutations identified by other means are homozygous lethal; the first is a mutant detected because of its reduced PK-3 activity in heterozygotes, and the second is a morphologically detected mutation at the d locus. Three dominant visible mutations are also described briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. V. Malling and L. R. Valcovic, A biochemical specific locus mutation system in mice, Arch. Toxicol., 38:45–51 (1977).

    Article  Google Scholar 

  2. F. M. Johnson, G. T. Roberts, R. K. Sharma, F. Chasalow, R. Zweidinger, A. Morgan, R. W. Hendren, and S. E. Lewis, The detection of mutants in mice by electrophoresis: Results of a model induction experiment with procarbazine, Genetics, 97: 113–124 (1981).

    Google Scholar 

  3. F. J. Johnson, F. Chasalow, G. Anderson, P. MacDougal, R. W. Hendren, and Susan E. Lewis, A variation in mouse kidney pyruate kinase activity determined by a mutant gene on chromosome 9, Genetical Research, 37:123–131 (1981).

    Article  Google Scholar 

  4. F. M. Johnson and S. E. Lewis, Mouse spermatogonia exposed to a high, multiply fractionated dose of a cancer chemotherapeutic drug: Mutation analysis by electrophoresis, Mutation Res., 81:197–202 (1981).

    Article  Google Scholar 

  5. F. M. Johnson and S. E. Lewis, Electrophoretically detected germinal mutations induced in the mouse by electrophoresis, Proc. Natl. Acad. Sci. USA, 78:3138–3141 (1981).

    Article  ADS  Google Scholar 

  6. F. M. Johnson and S. E. Lewis, The human genetic risk of airborn genotoxics: An approach based on electrophoretica techniques applied to mice, Brookhaven Symposium (in press).

    Google Scholar 

  7. E. R. Soares, TEM-Induced gene mutations at enzyme loci in the mouse, Environmental Mutagenesis, 1:19–25 (1979).

    Article  MathSciNet  Google Scholar 

  8. E. R. Soares, Identification of a new allele of Es-1 segregating in an inbred strain of mice, Biochemical Genetics, 17:577–583 (1979).

    Article  Google Scholar 

  9. G. Schlager and M. M. Dickie, Natural mutation rates in the house mouse. Estimates for five specific loci and dominant mutations, Mutation Res., 11:89–96 (1967).

    Google Scholar 

  10. A. G. Searle, Mutation induction in mice, Adv. Radiation Biol., 4:131–207 (1974).

    Google Scholar 

  11. C.-Y. Lee, Shwu-Maan Lee, Susan E. Lewis, and Frank M. Johnson, Identification and biochemical analysis of mouse mutants deficient in cytoplasmic malic enzyme, Biochemistry, 19:5098–5103 (1980).

    Article  Google Scholar 

  12. F. M. Johnson, F. Chasalow, R. W. Hendren, L. B. Barnett, and S. E. Lewis, A null mutation at the mouse Phosphoglucomutase-1 locus and a new locus, Pgm-3, Biochemical Genetics, 19:599–615.

    Google Scholar 

  13. S. Lewis, G. Anderson, L. Barnett, P. MacDougal, and F. M. Johnson, A new electrophoretically expressed allele at the Idh-1 locus in the mouse (in internal review process).

    Google Scholar 

  14. J. Womack, Single gene differences controlling enzyme properties in the mouse, Genetics 92 Suppl., Proceedings of the Workshop: Methods in Mammalian Mutagenesis S5-S12 (1979).

    Google Scholar 

  15. T. H. Roderick, F. H. Ruddle, V. M. Chapman, and T. B. Shows, Biochemical polymorphisms in feral in inbred mice (Mus muscuius), Biochem. Genet., 5:457–466 (1971).

    Article  Google Scholar 

  16. R. K. Selander, S. Y. Yang, and W. Craig Hunt, Polymorphism in esterase and hemoglobin in wild populations of the house mouse, Studies in Genetics V, 271–338.

    Google Scholar 

  17. T. B. Shows, F. H. Ruddle, and T. H. Roderick, Phosphoglucomutase electrophoretic variants in the mouse, Biochem. Genet., 3:25–35 (1969).

    Article  Google Scholar 

  18. R. A. Popp, Studies on the mouse hemoglobin loci: Heterogeneity of electrophoretically indistinguishable single-type hemoglobins, J. Hered., 53:75–77 (1962).

    Google Scholar 

  19. R. A. Popp, Studies on the mouse hemoglobin loci IV, independent segregation of Hb and Sal: Effect of the loci on the electrophoretic and solubility properties of hemoglobins, J. Hered., 53:77–80 (1962).

    Google Scholar 

  20. J. B. Whitney, III, G. T. Copland, L. C. Skow, and E. S. Russell, Resolution of products of the duplicated hemoglobin α-chain loci by isoelectric focusing, Proc. Natl. Acad. Sci. USA, 76, 867 (1979).

    Article  ADS  Google Scholar 

  21. J. B. Whitney, III, Mouse hemoglobinopathies: Detection and characterization of thalassemias and globin-structure mutations. Animal Models of Inherited Metabolic Diseases, E. Liss, Inc., in press (1982).

    Google Scholar 

  22. P. A. Lalley, J. D. Minna, and V. Francke, Conservation of autosomal gene synteny groups in mouse and man, Nature, 274: 160162 (1978).

    Article  Google Scholar 

  23. James E. Womack, Esterase-6 (Es-6) in laboratory mice: Hormone-influenced expression and linkage relationship to oligosyndactylism (Os), Esterase-1 (Es-1), and esterase-2 (Es-2) in chromosome 8, Biochem. Genet., 13:311–322 (1975).

    Article  Google Scholar 

  24. S. Rapley, W. H. P. Lewis, and H. P. Harris, Tissue distributions, substrate specifications and molecular sizes of human peptidases determined by separate gene loci, Am. Hum. Genet., 34:307–320 (1971).

    Article  Google Scholar 

  25. T. B. Shows, V. M. Chapman, and F. H. Ruddle, Mitochondrial malate dehydrogenase and malic enzyme: Mendelian inherited electrophoretic variants in the mouse, Biochem. Genet., 4: 707–714 (1970).

    Article  Google Scholar 

  26. D. Brdiczka and D. Pette, Intra- and Extramitochondrial isozymes of (NADP) malate dehydrogenase, Eur. J. Biochem., 19: 546–551 (1971).

    Article  Google Scholar 

  27. R. P. Erickson, E. M. Eicher, and S. Gluecksohn-Waelsch, Demonstration in mouse of X-ray induced deletions for a known enzyme structural locus, Nature, 248:416–418 (1974).

    Article  ADS  Google Scholar 

  28. S. Gluecksohn-Waelsch, M. B. Schiffman, J. Thorndike, and C. F. Cori, Complementation studies of lethal alleles in the mouse causing deficiencies of glucose-6-phosphate, tyrosine aminotransferase and serine dehydratase, Proc. Natl. Acad. Sci. USA, 71:825–829 (1974).

    Article  ADS  Google Scholar 

  29. S. E. Lewis, A. Turchin, and T. H. Wojtowicz, Fertility studies of complementing genotypes at the albino locus of the mouse, J. Reprod. Fertil., 53:197–202 (1978).

    Article  Google Scholar 

  30. H. W. Mohrenweiser and R. P. Erickson, Enzyme changes associated with mitochondrial malic enzyme deficiency in mice, Biochem. Biophys. Acta, 587:313–323 (1979).

    Google Scholar 

  31. A.J. L. Brown, Physiological correlates of an enzyme polymorphism, Nature, 269:803–804 (1977).

    Article  ADS  Google Scholar 

  32. L. B. Russell, Definition of functional units in a small chromosomal segment of the mouse and its use in interpreting the nature of radiation-induced mutations, Mutation Research, 11: 107–123.

    Google Scholar 

  33. W. Sheridan, The dominant effects of a recessive lethal in the mouse, Mutat. Res., 5:323–328 (1968).

    Article  Google Scholar 

  34. K. G. Luning and Sheridan, Dominant effects of recessive lethals in mice, Hereditas, 59:289–297 (1968).

    Article  Google Scholar 

  35. W. L. Russell, X-ray induced mutations in mice, Cold Spring Harbor Symp. Quant. Biol., 16:327–336 (1951).

    Google Scholar 

  36. M. F. Lyon and T. Morris, Gene and chromosome mutation after large fractionated or unfractionated radiation doses to mouse spermatogonia, Mutation Res., 8:191–198 (1969).

    Article  Google Scholar 

  37. A. M. Cloudman and L. E. Bunker, The varitint-waddler mouse: A dominant mutation in Mus musculus, J. Hered., 36:254–263 (1945).

    Google Scholar 

  38. A. B. Grobman and D. R. Charles, Mutant white mice, J. Hered., 38:381–384 (1947).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Lewis, S.E., Johnson, F.M. (1983). Dominant and Recessive Effects of Electrophoretically Detected Specific Locus Mutations. In: de Serres, F.J., Sheridan, W. (eds) Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk. Environmental Science Research, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3739-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3739-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3741-6

  • Online ISBN: 978-1-4613-3739-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics