Skip to main content

Martensitic Transformations in Fe-Cr-Ni Stainless Steels

  • Chapter
Austenitic Steels at Low Temperatures

Abstract

The AISI 300 series stainless steels, especially alloys 304, 310, and 316, are used extensively for cryogenic structures. These alloys have a high elastic modulus, high toughness and ductility, low thermal and electrical conductivity, and good weldability. Because of these characteristics, they are used more than any other alloy class for structures for service at 20 K and below, but their use is complicated by the metastability of the austenitic structure of most alloys of this Fe-Cr-Ni alloy series. The metastability leads tomartensitic transformation during cooling, from applied stress or during plastic deformation. The martensitic transformation is a significant design consideration in applications requiring fracture control planning, close dimensional tolerances, the absence of a ferromagnetic phase, and high toughness of weldment, heat-affected zone, and base metal. Consequently, research has been conducted to characterize the transformations and their effects on mechanical and physical properties and in-service performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, M., Olson, G. B., and Clapp, P. C., On the classification of displacive phase transformations, in Proceedings of the International Conference on Martensitic Transformations, ICOMAT 1979, Department of Materials Science and Engineering, M.I.T., Cambridge, Massachusetts (1979), pp. 1– 11.

    Google Scholar 

  2. Reed, R. P. and Breedis, J. F. (1966). Low-Temperature phase transformations, in Behavior of Materials at Cryogenic Temperatures, ASTM STP No. 387, American Society for Testing and Materials, Philadelphia, Pennsylvania (1966), pp. 60– 132.

    Google Scholar 

  3. Bilby, B. A. and Christian, J. W., The crystallography of martensitic transformations, J. Iron Steel Inst. 197:122– 131 (1961).

    CAS  Google Scholar 

  4. Christian, J. W., Basic crystallography and kinetics, in Martensite Fundamentals and Technology, E. R. Petty, ed., Longman Group, London, 11–41 (1970).

    Google Scholar 

  5. Wayman, C. M., Introduction to the Crystallogrpahy of Martensitic Transformations, Macmillan Co., New York (1964).

    Google Scholar 

  6. Wayman, C. M., The crystallography of martensitic transformations in alloys of iron, in Advances in Materials Research, Vol. 3, H. Herman, ed., Interscience, New York (1968), pp. 147–304.

    CAS  Google Scholar 

  7. Lieberman, D. S., Crystal geometry and mechanisms of phase transformations in crystalline solids, in Phase Transformations, American Society for Metals, Metals Park, Ohio (1970), pp. 1–58.

    Google Scholar 

  8. Roitburd, A. L. and Kurdjumov, G. V., The nature of martensitic transformations, Mater. Sci. Eng. 39:141– 167 (1979).

    Article  CAS  Google Scholar 

  9. Entwisle, A. R., The kinetics of martensite formation in steel, Metall. Trans. 2:2395– 2407 (1971).

    Article  CAS  Google Scholar 

  10. Christian,J.W., The Theory of Transformations in Metals and Alloys, Pergamon Press, New York (1965).

    Google Scholar 

  11. Kaufman, L. and Cohen, M., Thermodynamics and kinetics of martensitic transformations, in Progress in Metal Physics, Vol. 7, B. Chalmers and R. King, eds., Pergamon Press, New York, (1958) pp. 165–246.

    Google Scholar 

  12. Barrett, C. S., Transformations at low temperatures, Trans. Jap. Inst. Met. 17: 465–475 (1976).

    CAS  Google Scholar 

  13. MartenSite-Fundamentals and Technology, E. R. Petty, ed., Longman Group, London (1970).

    Google Scholar 

  14. Christian, J. W., The Theory of Transformations in Metals and Alloys, Pergamon Press, New York (1976).

    Google Scholar 

  15. Physical Properties of Martensite and Bainite, The Iron and Steel Institute Special Report 93, Percy Lund, Hampshires & Co., London (1965).

    Google Scholar 

  16. Mechanism of Phase Transformations in Crystalline Solids, Monograph and Report Series No. 33, Institute of Metals, London, England (1969).

    Google Scholar 

  17. Shape Memory Effect in Alloys, J. Perkins, ed., Plenum Press, New York (1975).

    Google Scholar 

  18. New Aspects of Martensitic Transformations, H. Suzuki, ed., Japan Institute of Metals, Tokyo, Japan (1976).

    Google Scholar 

  19. Phase Transformations, American Society for Metals, Metals Park, Ohio (1970).

    Google Scholar 

  20. Proceedings of the International Conference on Martensitic Transformation, ICOMAT-1979, W. S. Owen, ed., Department of Materials Science and Engineering, M.I.T., Cambridge, Massachusetts (1979).

    Google Scholar 

  21. Breedis, J. F. and Kaufman, L., Formation of hcp and bcc phases in austenitic iron alloys, Metall. Trans. 2: 2359–2371 (1971).

    Article  CAS  Google Scholar 

  22. Kaufman, L., The free energy changes attending the martensitic transformation in the iron-chromium and iron-chromium-nickel systems, Trans AIME 215: 218–223 (1959).

    CAS  Google Scholar 

  23. Kaufman, L. and Cohen, M., The martensitic transformation in the iron-nickel system, Trans. AIME 206: 1393–1401 (1956).

    Google Scholar 

  24. Rao, M. M., Russell, R. J., Winchell, P. G., A correlation of thermodynamic variables for iron-rich iron-nickel-carbon alloys, Trans. AIME 239: 634–642 (1967).

    CAS  Google Scholar 

  25. Kaufman, L., The lattice stability of the transition metals, in Phase Stability in Metals and Alloys, P. S. Fudman

    Google Scholar 

  26. Reed, R. P., The spontaneous martensitic transformations in 18%Cr, 8%Ni steels, Acta Metall. 10: 865–877 (1962).

    Article  CAS  Google Scholar 

  27. Eichelman, G. H. and Hull, F. C, The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18-8-type stainless steel, Trans. Am. SoC Met. 45: 77–104 (1953).

    Google Scholar 

  28. Monkman, F. C, Cuff, F. B, and Grant N. J., Computation of M for stainless steels, Met. Prog. 71: 94–96 (1957).

    CAS  Google Scholar 

  29. Hammond, C M., The development of new high-strength stainless steels, in Advances in the Technology of Stainless Steels and Related Alloys, ASTM STP No. 369, American Society; for Testing and Materials, Philadelphia, Pennsylvania (1963), pp. 47–53.

    Google Scholar 

  30. Andrews, K. W., Empirical formulae for the calculation of some transformation temperatures, J. Iron Steel Inst. 203: 721–727 (1965).

    CAS  Google Scholar 

  31. Hull, F. C, Delta ferrite and martensite formation in stainless steels, Weld. Res. 52:193-s-203-s (1973).

    Google Scholar 

  32. Angel, T., Formation of martensite in austenitic stainless steels, J. Iron Steel Inst. 177: 165–174 (1954).

    CAS  Google Scholar 

  33. Williams, I., Williams, R. G., and Capellaro, R. C, Stability of austenitic stainless steels between 4 K and 373 K, in Proceedings of the Sixth International Cryogenic Engineering Conference, IPC Science and Technology Press, Guildford, Surrey, England (1976), pp. 337–341.

    Google Scholar 

  34. Warnes, L. A A and King, H. W., The low temperature magnetic properties of austenitic Fe-Cr-Ni alloys in the prediction of Neel temperatures and maximum susceptibilities, Cryogenics 16: 659–667 (1976).

    Article  CAS  Google Scholar 

  35. Lee, S., Millman, S., MacDougall, I. L., Keown, P., and Argent, B B, Enthalpy of the martensitic transformation in steels containing nickel and chromium, Met. Sci. 11: 261–271 (1977).

    CAS  Google Scholar 

  36. Dulieu, D. and Nutting, J., Stacking fault energy of Fe-Cr-Ni alloys, in Metallurgical Developments in High Alloy Steels, Special Report 86, Iron and Steel Institute, London (1964), pp. 140–145.

    Google Scholar 

  37. Schramm, R. E. and Reed, R. P., Stacking fault energies of seven commercial austenitic stainless steels, Metall. Trans. 6A: 1345–1351 (1975).

    Google Scholar 

  38. Rhodes, C G. and Thompson, A W., The composition dependence of stacking fault energy in austenitic stainless steels, Metall. Trans. 8A: 1901–1906 (1977).

    Google Scholar 

  39. Brofman, P. J. and Ansell, G. S., On the effect of carbon on the stacking fault energy of austenitic stainless steels, Metall. Trans. A 9A: 879–880 (1978).

    Google Scholar 

  40. King, H. W. and Larbalestier, D. C, Austenitic stainless steels at cryogenic temperatures: The compositional dependence of the M, Cryogenics 21: 521–524 (1981).

    Article  CAS  Google Scholar 

  41. Collings, E. W. and King, H. W., Austenitic stainless steel as magnetic transition metal alloys, in The Metal Science of Stainless Steels, E. W. Collings and H. W. King, eds., Metallurgical Society of the AIME, New York (1979), pp. 1–21.

    Google Scholar 

  42. Bampton, C. C., Jones, L. P., and Loretto, M. H., Stacking fault energy measurements in some austenitic stainless steels, Acta Metall. 26:39-51 (1978). Breedis, J. F., Martensitic transformations in iron-chromiumnickel alloys, Trans. AIME 230: 1583 - 1596 (1964).

    Google Scholar 

  43. Kelly, P. M., The martensite transformation in steels with low stacking fault energy, Acta Metall. 13: 635 - 646 (1965).

    Article  CAS  Google Scholar 

  44. Wirth, A. and Bickerstaffe J, The morphology and substructure of martensite in maraging steels, Metall. Trans. 5: 799 - 808 (1974).

    Article  CAS  Google Scholar 

  45. Lagneborg, R., The martensite transformation in 18%Cr-8%Ni steels, Acta Metall. 12: 823 - 843 (1964).

    Article  CAS  Google Scholar 

  46. Abrassart, F., Stress-induced y~a' martensitic transformation in two carbon stainless steels. Application to trip steels, Metall. Trans. 4: 2205 - 2216 (1973).

    CAS  Google Scholar 

  47. Breedis, J. F., Influence of dislocation substructure on the martensitic transformation in stainless steel, Acta Metall. 13: 2359 - 2371 (1965).

    Google Scholar 

  48. Strife, J. R., Carr, M. J., and Ansell, G. S., The effect of austenite prestrain above the M temperature on the martensitic transformation in Fe-Ni-Cr~C alloys, Metall. Trans. 8A: 1471 - 1484 (1977).

    Google Scholar 

  49. Brooks, J. W., Loretto, M. H., and Smallman, R. E., Direct observations of martensite nuclei in stainless steel, Acta Metall. 27: 1839 - 1847 (1979).

    Article  CAS  Google Scholar 

  50. Suzuki, T., Kojima, H., Suzuki, K., Hashimoto, T., and Ichihara, M., An experimental study on the martensite nucleation and growth in 18/8 stainless steel, Acta Metall., 25, 1151 - 1162 (1977).

    Article  Google Scholar 

  51. Mangonon, P. L. and Thomas, G., Structure and properties of thermal-mechanically treated 304 stainless steel, Metall. Trans. 1, 1587 - 1594 (1970).

    CAS  Google Scholar 

  52. Murr L E., Staudhammer, K. P. and Hecker S. S., Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II. Microstructural study, Metall. Trans. 13A: 627 - 635 (1982).

    CAS  Google Scholar 

  53. Mirzagev, D. A., Goykhanberg, Y. N., Shteynberg, M. M., and Rushchin, s. V., The elasto-plastic strain effects in alloys with low stacking fault energy at temperatures above M, Fiz. Met. Metalloved. 35: 1206 - 1212 (1973).

    Google Scholar 

  54. Guntner, C. J. and Reed, R. P., The effect of experimental variables including the martensitic transformation on the low temperature mechanical properties of austenitic stainless steels, ASM Trans. Q. 55: 399 - 419 (1962).

    CAS  Google Scholar 

  55. Reed, R. P. and Guntner, C. J., Stress-induced martensitic transformations in 18er-8Ni steel, Trans. AIME 230: 1713 - 1720 (1964).

    Google Scholar 

  56. Olson, G. B. and Azrin, M., Transformation behavior of TRIP steels, Metall. Trans. A 9A: 713 - 721 (1978).

    Google Scholar 

  57. Breedis, J. F. and Robertson, W. D., Martensitic transformation and plastic deformation in iron alloy single crystals, Acta Metall. 11:547-559 (1963)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Reed, H.P. (1983). Martensitic Transformations in Fe-Cr-Ni Stainless Steels. In: Reed, R.P., Horiuchi, T. (eds) Austenitic Steels at Low Temperatures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3730-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3730-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3732-4

  • Online ISBN: 978-1-4613-3730-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics