Skip to main content

The Lineshapes of Subdoppler Resonances Observable with FM-Side-Band (Optical Heterodyne) Laser Techniques

  • Chapter
Advances in Laser Spectroscopy

Abstract

One of the most powerful spectroscopic techniques available for the measurement of weak absorption is the use of frequency modulation of the source complemented by phase sensitive detection. This approach is highly effective in separating the interesting narrow resonance features from the broad background profile. While optimum amplitude of the frequency modulation leads to recovery of nearly the full signal component, it also leads to broadened resonance profiles which are not immediately related to the physical resonances of interest. Furthermore, it is attractive to employ high modulation frequencies to take advantage of the nearly universal situation that one finds experimentally, namely the concentration of excess noise toward low frequencies. Ultimately then, the resonance profiles of interest are further “distorted” by the modulation process when the modulation frequency is comparable to the resonance width. This constraint is particularly painful in contemporary ultrahigh resolution optical experiments when the measured lines may only be of ~ kiloHertz width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Wahlquist, J. Chem. Phys. 35, 1708 (1961).

    Article  Google Scholar 

  2. R. L. Smith, J. Opt. Soc. Am. 61, 1015 (1971).

    Article  Google Scholar 

  3. A. J. Wallard, J. Physics E: Sci. Instrum. 5, 926 (1972).

    Article  Google Scholar 

  4. J. L. Hall, in Physics of Quantum Electronics Lectures, 1970. Unpublished calculations performed with C. V. Kunasz give the broadening and sensitivity of signal recovery for arbitrary resonance lineshapes.

    Google Scholar 

  5. B. Smaller, Phys. Rev. 83, 812 (1951).

    Article  Google Scholar 

  6. J. V. Acrivos, J. Chem. Phys. 36, 1097 (1962).

    Article  Google Scholar 

  7. R. Karplus, Phys. Rev. 73, 1027 (1948); B. A. Jacobsohn and R. K. Wangness, Phys. Rev. 73, 942 (1948).

    Article  MATH  Google Scholar 

  8. G. C. Bjorklund, Opt. Lett. 5, 15 (1980); G. C. Bjorklund and M. D. Levenson, Phys. Rev. A 24, 167 (1981); G. C. Bjorklund, K. Jain, J. D. Hope, Appl. Phys. Lett. 38, 747 (1981).

    Article  Google Scholar 

  9. R. W. P. Drever and J. Hough, University of Glasgow, private communication, August 1979.

    Google Scholar 

  10. J. L. Hall, L. Hollberg, T. Baer and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981); and in Laser Spectroscopy 5, eds. A. R. W. McKellar, T. Oka, and B. P. Stoicheff (Springer-Heidelberg, 1981), p. 178.

    Google Scholar 

  11. J. L. Hall, L. Hollberg, Ma Long-Sheng, T. Baer, H. G. Robinson, J. Physique Special Publication, 3rd Symposium on Frequency Metrology and Standards, Aussois, October 1981.

    Google Scholar 

  12. M. Sargent and P. E. Toschek, Appl. Phys. 11, 107 (1976).

    Article  Google Scholar 

  13. Useful discussions are given in e.g. Laser Physics by M. Sargent, M. O. Scully and W. E. Lamb, Jr. (Addison-Wesley, Reading, Mass, 1974); and in Quantum Electronics by A. Yariv (Wiley, New York, 1975) Section 8.

    Google Scholar 

  14. The physics of these processes is equivalent to four-wave mixing (“wavefront conjugation”) but is somewhat complicated by the presence of three frequencies in the probe beam. See Ref. 12 and references therein. See also R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, Phys. Rev. Lett. 44, 1251 (1980).

    Article  Google Scholar 

  15. J. H. Shirley has recently given the first few correction terms due to such coherence effects. Unpublished, 1981, private communication.

    Google Scholar 

  16. J. H. Shirley, J. Phys. B: Atom. Molec. Phys. 13, 1537 (1980).

    Article  Google Scholar 

  17. L. Hollberg and J. H. Shirley, to be published.

    Google Scholar 

  18. See, e.g., A. L. Betz, in Laser Spectroscopy V, eds. A. R. W. McKellar, T. Oka and B. P. Stoicheff (Springer-Verlag, Heidelberg, 1981).

    Google Scholar 

  19. This idea is the molecular equivalent of the original phaselocking proposal made by Drever, Ref. 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Hall, J.L., Robinson, H.G., Baer, T., Hollberg, L. (1983). The Lineshapes of Subdoppler Resonances Observable with FM-Side-Band (Optical Heterodyne) Laser Techniques. In: Arecchi, F.T., Strumia, F., Walther, H. (eds) Advances in Laser Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3715-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3715-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3717-1

  • Online ISBN: 978-1-4613-3715-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics