Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 94))

Abstract

Quantum nondemolition—the phrase tumbles easily out of the brain and off the tounge. Too easily, in fact—one is left wondering what it could possibly mean. It could, for example refer to an unsuccessful laser weapon, or it might be a law prohibiting destruction of the buildings where the quantum theory was invented. Alas, it is neither of these, but what it does mean might be just as surprising. Quantum nondemolition refers to techniques for monitoring a weak force acting on a harmonic oscillator, the force being so weak that it changes the oscillator’s amplitude by an amount less than the amplitude of zero-point fluctuations. In these lecture notes I describe the current understanding of quantum nondemolition techniques and give a brief account of how that understanding developed. The references are intended to include a complete list of published work that bears directly on the quantum nondemolition problem.

This work was supported in part by the National Science Foundation [AST79-22012-a1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.P. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phy&. Rev. 40, 749 (1932).

    Article  ADS  MATH  Google Scholar 

  2. K.S Thorne, R.W.P, Drever, C.M. Caves, M. Zimmermann, and V.D. Sandberg, “Quantum nondemolition measurements of harmonic oscillators,” Phy&. R.v. Lett. 40, 667 (1978).

    Article  ADS  Google Scholar 

  3. K.S. Thorne, C.M. Caves, V.D. Sandberg, M. Zimmermann, and R.W.P. Drever, “The quantum limit for gravitational-wave detectors and methods of circumventing it,” in Sources of Gsiavitationat Radiation, edited by L. Smarr ( Cambridge University, Cambridge, England, 1979 ), p. 49.

    Google Scholar 

  4. C.M, Caves, K.S. Thorne, R.W.P. Drever, V.D. Sandberg, and M, Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phy.. 52, 341 (1980).

    Article  ADS  Google Scholar 

  5. V.B. Braginsky, Yu.I. Vorontsov, and F.Yat Khalili, “Optimal quantum measurements in detectors of gravitational radiation,” Pis’ma Ik. Eksp. Teor. Fiz. 27, 296 (1978).

    ADS  Google Scholar 

  6. V.B. Braginsky, Yu.I. Vorontsov, and F.Yat Khalili, JETP Lett. 27, 276 (1978)

    ADS  Google Scholar 

  7. C.W. Helstrom, “Detection of quantum signals by a mismatched receiver,” J. Inform. and Optimiz. Set. 1, 1 (1980).

    MathSciNet  MATH  Google Scholar 

  8. A.G. Smagin, “A 1-MHz quartz resonator with a Q factor of 4.2 x 109 at a temperature of 2°K,” Prib. Tekh. Eksp. 17(6), 143 (1974) [Instrum. Exp. Tech. (USSR) 17, 1721 (1974)].

    MathSciNet  Google Scholar 

  9. V.B. Braginsky, “The conditions for the detection of the high frequency gravitational wave of nonterrestrial origin,” in Experimental Gravitation, edited by B. Bertotti ( Accademia Nazionale dei Lincei, Rome, 1977 ), p. 219.

    Google Scholar 

  10. D,F. McGuigan, C.C. Lam, R.Q. Gram, A.W. Hoffmann, D.H. Douglass, and H.W. Gutche, “Measurements of the mechanical Q of single- crystal silicon at low temperatures,” J. Low Temp. Phys. 30, 621 (1978); see also Ref. 19.

    Article  ADS  Google Scholar 

  11. H.P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226 (1976).

    Article  ADS  Google Scholar 

  12. C.M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. V 23, 1693 (1981).

    ADS  Google Scholar 

  13. V.B. Braginsky, “Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator,” Zh. Eksp. Teor. Fiz. 53, 1434 (1967).

    Google Scholar 

  14. [Sov. Phys. JETP 26, 831 (1968)]

    ADS  Google Scholar 

  15. V.B. Braginsky, Physical Experiments with Test Bodies (Nauka, Moscow, 1970) [English translation published as NASA Technical Translation F-672, National Technical Information Service, Springfield, Virginia], Chapter 1, Section 3.

    Google Scholar 

  16. V.B, Braginsky, “The prospects for high sensitivity gravitational antennae,” in Gravitational Radiation and Gravitational Collapse, edited by C. DeWitt-Morette ( Reidel, Dordrecht, 1974 ), p. 28.

    Google Scholar 

  17. V.B. Braginsky and Yu.I. Vorontsov, “Quantum-mechanical limitations in macroscopic experiments and modern experimental technique,” Usp. Fiz. Nauk 114, 41 (1974).

    Article  Google Scholar 

  18. V.B. Braginsky and Yu.I. Vorontsov, [Sov. Phys. Usp. 17, 644 (1975)]

    Article  ADS  Google Scholar 

  19. V.B. Braginsky and A.B. Manukin, Measuremnt of Weak Forces in Physics Experiments (Nauka, Moscow, 1974) [English translation edited by D.H. Douglass (University of Chicago, Chicago, 1977)], Chapters 4 and 5.

    Google Scholar 

  20. V.B. Braginsky, “The detection of gravitational waves and quantum nondisturbative measurements,” in Topics In Theoretical and Experimental Gravitation Physic, edited by V. De Sabbata and J. Weber ( Plenum, New York, 1977 ), p. 105.

    Google Scholar 

  21. R.P. Giffard, “Ultimate sensitivity limit of a resonant gravitational-wave antenna using a linear motion detector,” Phys. Rev. V 14, 2478 (1976).

    Article  ADS  Google Scholar 

  22. D.H. Douglass, “Gravitational-wave experiments,” in Experimental Gravitation, edited by B. Bertotti ( Accademia Nazionale dei Lincei, Rome, 1977 ), p. 323.

    Google Scholar 

  23. M.B. Mensky, “Quantum restrictions for continuous observation of an oscillator,” Phys. Rev. V 20, 384 (1979).

    ADS  Google Scholar 

  24. V. Moncrief, “Coherent states and quantum nonperturbing measurements,” Ann. Phys. (N.V.) 114, 201 (1978).

    Article  ADS  Google Scholar 

  25. W.G. Unruh, “Quantum nondemolition measurement and coherent states,” Phys. Rev. V 17, 1180 (1978).

    ADS  Google Scholar 

  26. V.B. Braginsky, Yu.I. Vorontsov, and V.D. Krivchenkov, “Unperturbed measurements of the n-quantum state of a harmonic oscillator,” Ik. Eksp. Teor. Viz. 68, 55 (1975) [Sov. Phys. JETP 41, 28 (1975)].

    Google Scholar 

  27. W.G. Unruh, “Analysis of quantum nondemolition measurement,” Phys. Rev. D 18, 1764 (1978).

    ADS  Google Scholar 

  28. V.B. Braginsky, Yu.I. Vorontsov, and F.Ya. Khalili, “Quantum singularities of a ponderomotive meter of electromagnetic energy,” Ik. Eksp. Teor. Viz. 73, 1340 (1977) [Sov. Phys. JETP 46, 705 (1977)].

    Google Scholar 

  29. V.B. Braginsky and V.V, Kolesov, “Use of the magnetooptical properties of a lightguide to measure weak microwave fields,” Pis*’ma Zh. Tekh. Fiz. 5, 1057 (1979) [Sov. Tech. Phys. Lett. 5, 441 (1979)]

    Google Scholar 

  30. V.B. Braginsky and F.Ya. Khalili, “Optico-magnetic effects in nondestructive quantum counting,” Ik. Eksp. Teor. Viz. 78, 1712 (1980) [Sov. Phys. JETP 51, 859 (1980)].

    Google Scholar 

  31. V.B. Braginsky and S,P. Viatchanin, “On the quantum nondemolition measurement of the energy of optical quanta,” this volume.

    Google Scholar 

  32. J.N. Hollenhorst, “Quantum limits on resonant-mass gravitational- radiation detectors,” Phys, Rev. D 19, 1669 (1979).

    ADS  Google Scholar 

  33. W.G. Unruh, “Quantum nondemolition and gravity-wave detection,” Phys. Rev. D 19, 2888 (1979).

    ADS  Google Scholar 

  34. O. von Roos, “Quantum nondemolition measurements: Comments on recent developments,” Phys. Rev. D 18, 4796 (1978).

    Google Scholar 

  35. A.V. Gusev and V.N. Rudenko, “Quantum-mechanical analysis of the sensitivity of a gravitational antenna,” Ik. Eksp. Teor. Viz. 76, 1488 (1979) [Sov. Phys. JETP 49, 755 (1979)].

    Google Scholar 

  36. W.G. Unruh, “Quantum nondemolition,” in Gravitational Radiation, Collapsed Objects, and Exact Solutions, edited by C. Edwards ( Springer, Berlin, 1980 ), p. 385.

    Google Scholar 

  37. M.B. Mensky, “Quantum restrictions on the measurement of the parameters of motion of a macroscopic oscillator,” Zh. Eksp. Teor. Fiz. 77, 1326 (1979) [Sov. Phys. JETP 50, 667 (1979)].

    Google Scholar 

  38. V.V. Dodonov, V.I. Manko, and V.N Rudenko, “Nondemolition measurements in gravitational-wave experiments,” Zh. Eksp. Teor. Fiz. 78, 881 (1980) [Sov. Phys. JETP 51, 443 (1980)].

    Google Scholar 

  39. V.B. Braginsky, Yu.I. Vorontsov, and K.S, Thorne, “Quantum nondemolition measurements,” Science 209, 547 (1980).

    Article  ADS  Google Scholar 

  40. L.P. Grishchuk and M.V. Sazhin, “Quantum electromagnetic oscillator in the field of a gravitational wave and the problem of nondemolition measurements,” Zh. Eksp. Teor. Viz. 80, 1249 (1981).

    Google Scholar 

  41. Z. Vager, “A critique of the quantum nondemolition concept,” Phys. Lett. 84A, 163 (1981).

    Article  Google Scholar 

  42. R. Lynch, “On Vagerts critique of QND measurements,” submitted to Phys. Lett. A.

    Google Scholar 

  43. Yu.I. Vorontsov and F.Ya, Khalili, Detection of external force on an oscillator by measurement of its coordinate integral, this volume.

    Google Scholar 

  44. M. Hillery and M.O. Scully, “Quantum noise and quantum nondemolition measurements,” to be published; see also the chapter by Hillery in this volume.

    Google Scholar 

  45. W.A. Edelstein, J. Hough, J.R. Pugh, and W, Martin, Martin, “Limits to the measurement of displacement in an interferometric gravitational-radiation detector,” J. Phys. E 11, 710 (1978).

    Article  ADS  Google Scholar 

  46. C.M. Caves, “Quantum-mechanical radiation-pressure fluctuations in an interferometer,” Phys. Rev. Lett. 45, 75 (1980).

    Article  ADS  Google Scholar 

  47. R. Loudon, “Quantum limit on the Michelson interferometer used for gravitational-wave detection,” Phys., Rev. Lett. 47, 815 (1981).

    Article  ADS  Google Scholar 

  48. W. Pauli, “Die allgemeinen Prinzipien der Wellenmechanik,” in Handbuch deA Phys, Vol. 5, Part 1, edited by S. Flugge (Springer, Berlin, 1958), especially pp. 73–74.

    Google Scholar 

  49. R. Van Dyck, Jr., P. Ekstrom, and H. Dehmelt, “Axial, magnetron, cyclotron, and spin-cyclotron-beat frequencies measured on a single electron almost at rest in free space (geonium), ” SJatuAe 262, 776 (1976).

    Google Scholar 

  50. W.G. Unruh, “Readout state preparation and quantum nondemolition,” this volume.

    Google Scholar 

  51. S, Letzter and N. Webster, “Noise in amplifiers,” IEEE Spectrum 1(8), 67 (1970).

    Article  Google Scholar 

  52. W.W. Johnson and M. Bocko, “Approaching the quantum 1 limit1 for force detection,” Phys Rev. Lett. 47, 1184 (1981).

    Article  ADS  Google Scholar 

  53. W.C. Oelfke, “Nonbackreacting instrumentation for low-temperature gravitational-wave detectors,” this volume.

    Google Scholar 

  54. V.I. Panov and F.Ya. Khalili, “A means of enhancing sensitivity in the gravitational-wave experiment,” in Abstracts of Contributed Papers, 9th International Conference on General Relativity and Gravitation, Jena, German Democratic Republic, 1980 July 14–19, p. 397.

    Google Scholar 

  55. C.M. Caves, “Quantum limits on noise in linear amplifiers,” Caltech preprint, August 1981, to appear in Phys. Rev. D.

    Google Scholar 

  56. H. Heffner, “The fundamental noise limit of linear amplifiers,” Proc. IRE 50, 1604 (1962).

    Google Scholar 

  57. H,A. Haus and J.A. Mullen, “Quantum noise in linear amplifiers,” Phys. Rev. 128, 2407 (1962).

    Article  ADS  Google Scholar 

  58. B. Yurke and J. Denker, “Design for an ideal measuring device,” Physica B&C 108, 1359 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Caves, C.M. (1983). Quantum Nondemolition Measurements. In: Meystre, P., Scully, M.O. (eds) Quantum Optics, Experimental Gravity, and Measurement Theory. NATO Advanced Science Institutes Series, vol 94. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3712-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3712-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3714-0

  • Online ISBN: 978-1-4613-3712-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics