Skip to main content

The Munich Gravitational Wave Detector Using Laser Interferometry

  • Chapter
Book cover Quantum Optics, Experimental Gravity, and Measurement Theory

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 94))

Abstract

In 1971, a small experimental group at Munich began with the development of a Weber-type resonant bar antenna for the detection of gravitational waves In coincidence experiments between Munich and Frascati (with the highest sensitivities achieved with room temperature bars) no events have been found [2]. As a possibility to improve the sensitivity by several orders of magnitude, work on laser interferometry was started in 1975 [3]. Pioneering work on this approach had been done by Forward [4] and Weiss [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billing H., and Winkler W.,The Munich gravitational-wave detector Nuovo Cimento 33B:665 (1976).

    Article  Google Scholar 

  2. Kafka P., and Schnupp, L., Final result of the Munich-Frascati gravitational radiation experiment, Astron. Astrophys. 70:97 (1978).

    Google Scholar 

  3. Winkler W., A laser interferometer to search for gravitational radiation, Proc. Intern. Meeting on Experimental Gravitation, Pavia 1976, Accedamia Nazionale dei Lincei, Rome.

    Google Scholar 

  4. Forward R.L., Wideband laser interferometer gravitational radiation experiment, Phys. Rev. D 17:379 (1978).

    Article  ADS  Google Scholar 

  5. Weiss R., Electromagnetically coupled broadband gravitational antenna, Quarterly Progress Report Research Lab. of Electronics, M.I.T. 105: 54 (1972).

    Google Scholar 

  6. Billing H., Maischberger K., Rudiger A., Schilling R., Schnupp L., and Winkler W., An argon laser interferometer for the detection of gravitational radiation, J. Phys. E: Sci. Instrum. 12:1043 (1979).

    Article  ADS  Google Scholar 

  7. Herriot D., Kogelnik H., and Kompfner R., Off-axis paths in spherical mirror interferometers, Appl. Opt. 3: 523 (1964).

    Article  ADS  Google Scholar 

  8. Caves C.M., Quantum-mechanical noise in an interferometer, Phys. Rev. D 23:1693 (1981).

    Article  ADS  Google Scholar 

  9. Drever R.W.P., et al., (this meeting).

    Google Scholar 

  10. Rudiger A., Schilling R., Schnupp L., Winkler W., Billing H., and Maischberger K.,Demands on laser purity in an interferometer gravitational wave detector Proc. Third Intern. Symposium on Frequency Standards and Metrology, Aussois 1981, Editions de Physique, Orsay, in press.

    Google Scholar 

  11. Rüdiger A., Schilling R., Schnupp L., Winkler W., Billing H., and Maischberger K., A mode selector to suppress fluctuations in laser beam geometry, Optica Acta 28: 641 (1981).

    Article  ADS  Google Scholar 

  12. Schilling R. , Schnupp L., Winkler W., Billing H., Maischberger K., and Rüdiger A., A method to blot out scattered light effects, and its application to a gravitational wave detector, J. Phys. E: Sci. Instrum, 14:65 (1981).

    Article  ADS  Google Scholar 

  13. Lastovka J.B., An optical apparatus for very small angle light scattering - design, analysis and performance, Bell Syst. Techn. J. 55: 1225 (1976).

    ADS  Google Scholar 

  14. Elson J.M., Rahn J.P., and Bennett J.M., Light scattering from multilayer optics, comparison of theory and experiment, Applied Optics 19: 669 (1980).

    Article  ADS  Google Scholar 

  15. Man C.N., Brillet A., and Cerez P., Suppression of optical feedback effects on saturated absorption signals by phase modulation of the reflected light, J. Phys. E: Sci. Instrum. 11:19 (1978).

    Article  ADS  Google Scholar 

  16. Drever R.W.P., et al., A gravity—wave detector using optical cavity sensing, paper presented at GR9, Jena 1980

    Google Scholar 

  17. Drever R.W.P., et al., Optical cavity laser interferometers for gravitational detection, “Laser Spectroscopy V”, Springer Series in Optical Sciences 30: 33 (1981).

    Google Scholar 

  18. Troitskii Yu, V., Optimization and comparison of the characteristics of optical interference discriminators Sov. J. Quantum Electron. 8:628 (1978); (unfortunately this paper contains several misprints).

    Google Scholar 

  19. Hansch T.W., and Couillard B.,Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity , Opt. Commun. 35:441 (1980).

    Article  ADS  Google Scholar 

  20. Bode H.W., “Network analysis and feedback amplifier design”, van Norstrand, Princeton (1945); or other textbooks.

    Google Scholar 

  21. Welling H., and Wellegehausen B.,High resolution Michelson interferometer for spectral investigations of lasers, Applied Optics 11:1986 (1972).

    Article  ADS  Google Scholar 

  22. Yariv A., “Introduction to optical electronics”, Holt, Rinehart and Winston, New York (1976).

    Google Scholar 

  23. Hall J.L., Layer H.P., and Deslattes R.D., An acoustooptic frequency and intensity control system for CW lasers, IEEE J. Quantum Electron. QE-13: 45D (1977).

    Google Scholar 

  24. Mast T.S., Nelson J.E., and Saarloos J,A., Search for gravitational radiation from pulsars, Ap. J. 187:L49 (1974).

    Article  ADS  Google Scholar 

  25. Levine J.,Laser distance-measuring techniques Ann. Rev. Earth Planet. Sci. 5:357 (1977).

    Article  ADS  Google Scholar 

  26. Maischberger K., Rüdiger A., Schilling R., Schnupp L., Winkler W., and Billing H.,Noise investigations in a laser interferometer for the detection of gravitational radiation Proc. Second Marcel Grossmann Meeting on Recent Developments in General Relativity, Trieste 1979, North Holland, New York, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Billing, H., Winkler, W., Schilling, R., Rüdiger, A., Maischberger, K., Schnupp, L. (1983). The Munich Gravitational Wave Detector Using Laser Interferometry. In: Meystre, P., Scully, M.O. (eds) Quantum Optics, Experimental Gravity, and Measurement Theory. NATO Advanced Science Institutes Series, vol 94. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3712-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3712-6_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3714-0

  • Online ISBN: 978-1-4613-3712-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics