Advertisement

Rough Surface Effects of Aluminum Castings on Ultrasonic Sizing Algorithms

  • Kent Lewis
  • Dale Fitting
  • Laszlo Adler
Part of the Library of Congress Cataloging in Publication Data book series (volume 2A)

Abstract

Several techniques for characterizing flaws and inclusions using ultrasonic scattering information have been developed in recent years. These algorithms assume a noise-free medium and are sensitive to perturbations in the acquired spectra. However, surface roughness and volumetric porosity effects alter the available data.

In order to determine the effects of surface roughness typical of aluminum castings on inversion accuracy, a sequence of experiments was performed. Ultrasonic backscattering data were acquired from spheroidal defects in flat, smooth surfaced, diffusion bonded titanium samples. Next, the scattering spectra were perturbed using theoretically or experimentally determined transmission spectra obtained from rough surfaced cast aluminum samples. Inversion procedures were applied and results analyzed.

Keywords

Area Function Aluminum Casting Inversion Algorithm Spherical Void Quartz Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Adler and D.K. Lewis, IEEE Transactions on Sonics and Ultrasonics, SU-23, Vol. 5, 351, 1976.Google Scholar
  2. 2.
    D.K. Lewis, P. Szilas, D.W. Fitting and L. Adler, J. Acoust. Soc. Am., Vol. 63, 575, 1978.CrossRefGoogle Scholar
  3. 3.
    J.B. Keller, J. Appl. Phys., Vol. 28, 426, 1957.CrossRefMathSciNetGoogle Scholar
  4. 4.
    J.D. Achenbach and A.K. Gautesen, J. Acoust. Soc. Am., Vol. 61, 1977.Google Scholar
  5. 5.
    J.D. Achenbach, L. Adler, D.K. Lewis and H. McMaken, J. Acoust. Soc. Am., Vol. 66, 1848, 1979.CrossRefGoogle Scholar
  6. 6.
    J.D. Achenbach and L. Adler, Advances in Fracture Research (Fractures ’81), ICFS, Vol. 4, 2013, 1981.Google Scholar
  7. 7.
    M de Billy, F. Cohen-Tenoudji, A. Jungman and G. Quentin, IEEE Transactions on Sonics and Ultrasonics, SU-23, Vol. 5, 356, 1976Google Scholar
  8. 8.
    M. deBilly, F. Cohen-Tenoudji, G. Quentin, D.K. Lewis and L. Adler, J. of NDE, Vol. 1, 249, 1980.Google Scholar
  9. 9.
    J.E. Gubernatis, E. Domany and J.A. Krumhansl, J. Appl. Phys., Vol. 48, 2804 & 2812, 1977.Google Scholar
  10. 10.
    D.K. Lewis and L. Adler, J. Appl. Phys., Vol. 50, 5179, 1979.CrossRefGoogle Scholar
  11. 11.
    J.H. Rose and J.A. Krumhansl, J. Appl. Phys., Vol. 50, 2951, 1979.CrossRefGoogle Scholar
  12. 12.
    R.K. Elsley and R.C. Addison, DARPA/AF Review of Progress in Quantitative NDE, July 14-18, 1980, La Jolla, CA.Google Scholar
  13. 13.
    A. Jungman, L. Adler and G. Quentin, J. Appl. Phys., Vol. 53, 4673, 1982.CrossRefGoogle Scholar
  14. 14.
    A. Jungman, L. Adler, R. Roberts and J.D. Achenbach, “Theoretical and Experimental Developments on Ultrasonic Evaluation of Periodic Surfaces,” Review of Progress in Quantitative NDE, Vol. 2, Plenum Publishing Corp., 1983.Google Scholar
  15. 14.
    P.J. Weiton, J. Acoust. Soc. Am., Vol. 54, 66, 1973.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Kent Lewis
    • 1
  • Dale Fitting
    • 1
  • Laszlo Adler
    • 1
  1. 1.Department of Welding EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations