Advertisement

Applications of Advanced Voltammetric Methods in Bioelectrochemistry

  • Hans Wolfang Nürnberg
Part of the Ettore Majorana Institutional Sciences Series book series (SIPC)

Abstract

Certain modes of advanced voltammetry provide a significant methodological approach for a variety of research tasks and problems in bioelectrochemistry. The applications of voltammetry include the analysis and physicochemical characterization of biologically significant organic substances and biopolymers, studies on the fate and metabolism of drugs, on the interactions and effects that enzymes, mutagenic chemicals, ionizing radiation and toxic metals exert on biopolymers, the development of simple and reliable in vitro test procedures to monitor the resulting damages in nucleic acids, the investigation and mechanistic elucidation of enzymatic redox reactions and of photoredoxreactions, the performance of model studies on the biophysicochemical behavior of biopolymers at electrically charged interfaces, etc. Most applications of voltammetry have been hitherto performed in vitro. There is, however, reported in the literature, also a number of in vivo measurements, e.g. in brain chemistry [68–70].

Keywords

High Performance Liquid Chromatography Surface Enhance Raman Scattering Differential Pulse Voltammetry Bulk Concentration Electrode Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.W. Nürnberg, The Determination of the Rate Constants of Dissociation and Recombination for Carboxylic Acids by High Level Faradaic Rectification, in Polarography 1964, MacMillian, London (1966).Google Scholar
  2. [2]
    H.W. Nürnberg and G. Wolff, J. Electroanal. Chem. 21, 99 (1969).CrossRefGoogle Scholar
  3. [3]
    H.W. Nürnberg, The Influence of Double-Layer Effects on Chemical Reactions at Charged Interfaces, in Membrane Transport in Plants, U. Zimmermann and J. Dainty (Editors), Springer Verlag, Berlin (1974).Google Scholar
  4. [4]
    M. Brezina and P. Zuman, Die Polarographie in der Medizin, Biologie und Pharmazie, Akademische Verlagsgesellschaft, Leipzig (1956).Google Scholar
  5. [5]
    H.W. Nürnberg, Angew. Chem. 72, 433 (1960).CrossRefGoogle Scholar
  6. [6]
    H.W. Nürnberg and M. v. Stackelberg, J. Electroanal Chem. 2, 181 (1961), 4, 1 (1962).Google Scholar
  7. [7]
    H.W. Nürnberg, Fresenius Z. Anal Chem. 186, 1 (1962).CrossRefGoogle Scholar
  8. [8]
    P. Zuman, Organic Polarographic Analysis, Pergamon Press, Oxford (1964).Google Scholar
  9. [9]
    J. Heyrovsky and J. Kuta, Grundlagen der Polarographie, Akademie Verlag, Berlin (1965).Google Scholar
  10. [10]
    P. Zuman, Substituent Effects in Organic Polarography, Plenum Press, New York (1967).Google Scholar
  11. [11]
    H. Hoffmann, Polarographic Analysis in Pharmacy, in Electro analytical Chemistry, H.W. Nürnberg (Editor), J. Wiley, New York (1974).Google Scholar
  12. [12]
    H. Jehring, Elektrosorptionsanalyse mit der Wechselstrompolarographie, Akademie Verlag, Berlin (1974).Google Scholar
  13. [13]
    H.W. Nürnberg and B. Kastening, Polarographic and voltammetric techniques, in Methodicum Chimicum, F. Körte (Editor), Academic Press, New York (1974), Vol. 1A.Google Scholar
  14. [14]
    L. Meites, H.W. Nürnberg and P. Zuman, Pure Appl Chem. 45, 81 (1976).CrossRefGoogle Scholar
  15. [15]
    W.F. Smyth (Editor), Polarography of Molecules of Biological Significance, Academic Press, New York (1979).Google Scholar
  16. [16]
    W.F. Smyth (Editor), Electroanalysis in Hygiene, Environmental, Clinical and Pharmaceutical Chemistry, Elsevier, Amsterdam (1980).Google Scholar
  17. [17]
    A.M. Bond, Modern Polarographic Methods in Analytical Chemistry, M. Dekker, New York (1980).Google Scholar
  18. [18]
    H.W. Nürnberg, Differentielle Pulspolarographie, Pulsvoltammetrie und Pulsinversvoltammetrie, in Analytiker-Taschenbuch, R. Bock, W. Fresenius, H. Günzler, W. Huber and G. Tölg (Editors), Springer Verlag, Berlin (1981), Vol. 2.CrossRefGoogle Scholar
  19. [19]
    B. Janik and P. Elving, Chem. Rev. 68, 295 (1968).CrossRefGoogle Scholar
  20. [20]
    D. Krznaric, P. Valenta and H.W. Nürnberg, J. Electroanal Chem. 65, 863 (1975).CrossRefGoogle Scholar
  21. [21]
    Y.M. Temerk, P. Valenta and H.W. Nürnberg, Bioelectrochem. Bioenerg. 7, 705 (1980).CrossRefGoogle Scholar
  22. [22]
    K.M. Ervin, E. Koglin, P. Valenta and H.W. Nürnberg, J. Electroanal Chem. 114, 179 (1980).CrossRefGoogle Scholar
  23. [23]
    P. Valenta, H.W. Nürnberg and D. Krznaric, Bioelectrochem. Bioenerg. 3,418(1976).CrossRefGoogle Scholar
  24. [24]
    Y.M. Temerk, P. Valenta and H.W. Nürnberg, J. Electroanal. Chem. 100, 77 (1979).CrossRefGoogle Scholar
  25. [25]
    Y.M. Temerk, P. Valenta and H.W. Nürnberg, J. Electroanal. Chem. 100, 289 (1980).CrossRefGoogle Scholar
  26. [26]
    D. Krznaric, P. Valenta, H.W. Nürnberg and M. Branica, J. Electroanal. Chem. 93, 41 (1978).CrossRefGoogle Scholar
  27. [27]
    P. Valenta and D. Krznaric, J. Electroanal. Chem. 75, 437 (1977).CrossRefGoogle Scholar
  28. [28]
    Y.M. Temerk, P. Valenta and H.W. Nürnberg, J. Electroanal. Chem. 131, 265 (1982).CrossRefGoogle Scholar
  29. [29]
    P. Valenta, H.W. Nürnberg and P. Klahre, Bioelectrochem. Bioenerg. 2, 204 (1975).CrossRefGoogle Scholar
  30. [30]
    H.W. Nürnberg and P. Valenta, Croat. Chem. Acta 48, 623 (1976).Google Scholar
  31. [31]
    H.W. Nürnberg and P. Valenta, Bioelectrochemical Behavior and Deconformation of Native DNA at Charged Interfaces, in Ions in Macromolecular and Biological Systems, D.H. Everett and B. Vincent (Editors), Proc. 29th Colston Symp., Scientechnica, Bristol (1978).Google Scholar
  32. [32]
    J.M. Sequaris, E. Koglin, P. Valenta and H.W. Nürnberg, Ber. Bunsenges. Phys. Chem. 85, 512 (1981).Google Scholar
  33. [33]
    H.W. Nürnberg, Untersuchungen zur Katalyse der Wasserstoßabscheidung durch Organische Stickstoffbasen an der Quecksilberkathode, in Advances in Polarography, I.S. Longmuir (Editor), Pergamon Press, Oxford (1960), Vol. 2.Google Scholar
  34. [34]
    P. Valenta and P. Grahmann, J. Electroanal. Chem. 49, 41 (1974).CrossRefGoogle Scholar
  35. [35]
    P. Valenta and H.W. Nürnberg, Biophys. Struct. Mechanism 1, 17 (1974).CrossRefGoogle Scholar
  36. [36]
    B. Malfoy, J.M. Sequaris, P. Valenta and H.W. Nürnberg, Bioelectrochem. Bioenerg. 3, 440 (1976).CrossRefGoogle Scholar
  37. [37]
    E. Palecek, Collect. Czechoslov. Chem. Commun. 39, 3449 (1974).Google Scholar
  38. [38]
    E. Palecek, Bioelectrochem. Bioenerg. 8, 469 (1981).CrossRefGoogle Scholar
  39. [39]
    J.M. Sequaris, P. Valenta, H.W. Nurnberg and B. Malfoy, On the Interfacial Behavior of Double Stranded Polynucleotides in Alkaline Solution, in The Behavior of ions on Macromolecular and Biological Systems, D.H. Everett and B. Vincent (Editors), Proc. 29th Colston Sym. Scientechnica, Bristol (1978).Google Scholar
  40. [40]
    B. Malfoy, J.M. Sequaris, P. Valenta and H.W. Nurnberg, J. Electroanal. Chem. 75, 455 (1977).CrossRefGoogle Scholar
  41. [41]
    T.L. Hill, J. Am. Chem. Soc. 80, 2142 (1958).CrossRefGoogle Scholar
  42. [42]
    J.M. Sequaris, B. Malfoy, P. Valenta and H.W. Nurnberg, Bioelectrochem. Bioenerg. 3, 461 (1976).CrossRefGoogle Scholar
  43. [43]
    E. Koglin, J.M. Sequaris and P. Valenta, J. Mol. Struct. 60, 421 (1980).ADSCrossRefGoogle Scholar
  44. [44]
    E. Koglin, J.M. Sequaris and P. Valenta, Z. Naturforsch. 36, 809 (1981).Google Scholar
  45. [45]
    J.M. Sequaris, P. Valenta, H.W. Nurnberg and B. Malfoy, Bioelectrochem. Bioenerg. 5, 483 (1978).CrossRefGoogle Scholar
  46. [46]
    J.M. Sequaris, P. Valenta and H.W. Nurnberg, Intl. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., in press.Google Scholar
  47. [47]
    J.M. Sequaris, Applications de la voltammitrie a I’ttude des acides desoxyribonucleiques natifs et modifies, These Doctorat d’Etat, Univ. Orleans (1982).Google Scholar
  48. [48]
    J.M. Sequaris, P. Valenta and H.W. Nurnberg, J. Electroanal. Chem. 122, 263 (1981).CrossRefGoogle Scholar
  49. [49]
    V. Brabec and J. Koudelka, Bioelectrochem. Bioenerg. 7, 793 (1980).CrossRefGoogle Scholar
  50. [50]
    L. Trnkova, M. Studnikova and E. Palecek, Bioelectrochem. Bioenerg. 7, 643 (1980).CrossRefGoogle Scholar
  51. [51]
    V. Brabec, Bioelectrochem. Bioenerg. 8, 437 (1981).CrossRefGoogle Scholar
  52. [52]
    M.Z. Wrona, R.N. Goyal and G. Dryhurst, Bioelectrochem. Bioenerg. 7, 433 (1980).CrossRefGoogle Scholar
  53. [53]
    A. Brajter-Toth, R.N. Goyal, M.Z. Wrona, T. Lacava, N.T. Nguyen and G. Dryhurst, Bioelectrochem. Bioenerg. 8, 413 (1981).CrossRefGoogle Scholar
  54. [54]
    J.A. Reynaud, P.I. Sicard and A. Obrenovitch, Experienta Suppl. 18, 543 (1971).Google Scholar
  55. [55]
    E. Lukasova, M. Vojtiskova and E. Palecek, Bioelectrochem. Bioenerg. 7, 671 (1980).CrossRefGoogle Scholar
  56. [56]
    C. Molinier-Jumel, B. Malfoy, J.A. Reynaud and G. Aubel-Sadron, Biochem. Biophys. Res. Commun. 84, 441 (1978).CrossRefGoogle Scholar
  57. [57]
    H. Berg, G. Horn and U. Luthardt, Bioelectrochem. Bioenerg. 8, 537 (1981).CrossRefGoogle Scholar
  58. [58]
    M.R. Smyth, C.G.B. Frischkorn and H.W. Nurnberg, Anal. Proc. 18,215(1981).Google Scholar
  59. [59]
    C.G.B. Frischkorn, M.R. Smyth, H.E. Frischkorn and J. Golimowski, Fresenius Z. Anal Chem. 300, 407 (1980).CrossRefGoogle Scholar
  60. [60]
    M.R. Smyth and C.G.B. Frischkorn, Fresenius Z. Anal Chem. 301, 220 (1980).CrossRefGoogle Scholar
  61. [61]
    M.R. Smyth and C.G.B. Frischkorn, Anal Chim. Acta 115, 292 (1980).CrossRefGoogle Scholar
  62. [62]
    H.W. Nürnberg, Pure Appl Chem. 54, 853 (1982).CrossRefGoogle Scholar
  63. [63]
    H.W. Nürnberg and B. Raspor, Environ. Technol. Letters 2, 457 (1981).CrossRefGoogle Scholar
  64. [64]
    H.W. Nürnberg and P. Valenta, Potentialities and Applications of Voltammetry in Chemical Speciation of Trace Metals in the Sea, in Trace Metals in Sea Water, C.S. Wong and K. Bruland (Editors), Plenum Press, New York, in press.Google Scholar
  65. [65]
    H.W. Nürnberg, A Critical Assessment of the Voltammetric Approach for the Study of Toxic Metals in Biological Specimens and Their Ecosystems, in Electroanalysis in Hygiene, Environmental, Clinical and Pharmaceutical Chemistry, W.F. Smyth (Editor), Elsevier, Amsterdam (1980).Google Scholar
  66. [66]
    H.W. Nürnberg, Potentialities and Applications of Voltammetry in the Analysis of Toxic Trace Metals in Body Fluids, in Analytical Techniques for Heavy Metals in Body Fluids, S. Facchetti (Editor), Elsevier, Amsterdam, in press.Google Scholar
  67. [67]
    S. Lewin, Displacement of Water and Its Control of Biochemical Reactions, Academic Press, New York (1974).Google Scholar
  68. [68]
    R.N. Adams, Anal Chem. 48, 1126 A (1976).CrossRefGoogle Scholar
  69. [69]
    R.F. Lane, A.T. Hubbard, C.D. Blaha, Bioelectrochem. Bioenerg. 5,504(1978).CrossRefGoogle Scholar
  70. [70]
    H.Y. Cheng, W. White and R.N. Adams, Anal Chem. 52, 2445 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Hans Wolfang Nürnberg
    • 1
  1. 1.Chemistry Department, Nuclear Research CenterInstitute of Applied Physical ChemistryJuelichFederal Republic of Germany

Personalised recommendations