Skip to main content

Energetics of Biological Redox Reactions

  • Chapter
Book cover Bioelectrochemistry I

Part of the book series: Ettore Majorana Institutional Sciences Series ((SIPC))

  • 163 Accesses

Abstract

Biological oxido-reduction reactions, catalyzed by a large variety of enzymes exchanging electrons between different electron donors and acceptors, and various coenzyme molecules, must interact with each other in a ordered and controlled fashion, in such a way to maintain the overall velocity of metabolism in steady state conditions. In a single phase situation, as is the case for soluble redox enzymes in the cytoplasm, the redox coupling between metabolic reactions depends in fact upon the concentrations maintained in the steady state for the different reagents and products, and is also related to the kinetic properties of the various redox enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.W. Heldt, Ann. Rev. Plant Physiol. 32, 139 (1981).

    Article  Google Scholar 

  2. M. Koike, L.J. Reed and W.R. Carroll, J. Biol. Chem. 238, 30 (1963).

    Google Scholar 

  3. H. Fernández-Moran, L.J. Reed, M. Koike and C.R. Willms, Science 145,930(1964).

    Article  ADS  Google Scholar 

  4. H. Nawa, W.T. Brady, M. Koike and L.J. Reed, J. Am. Chem. Soc. 82, 896 (1960).

    Article  Google Scholar 

  5. L.J. Reed and R.M. Oliver, Brookhaven Symp. Biol. 21, 397 (1968).

    Google Scholar 

  6. L. Spatz and P. Strittmatter, J. Biol. Chem. 248, 793 (1973).

    Google Scholar 

  7. M.J. Rogers and P. Strittmatter, J. Biol. Chem. 249, 895 (1975).

    Google Scholar 

  8. M.J. Rogers and P. Strittmatter, J. Biol. Chem. 249, 5565 (1974).

    Google Scholar 

  9. L. Spatz and P. Strittmatter, Proc. Natl. Acad. Sci. U.S.A. 68, 1042 (1971).

    Article  ADS  Google Scholar 

  10. P. Mitchell, Chemiosmotic Coupling and Energy Transduction, Glynn. Res. Bodmin, Cornwall, England, (1968).

    Google Scholar 

  11. H.A. Lardy and S.M. Ferguson, Ann. Rev. Biochem. 38, 991 (1969).

    Article  Google Scholar 

  12. A. Baccarini-Melandri, R. Casadio and B.A. Melandri, Curr. Top. Bioenerg. 12, 197 (1981).

    Google Scholar 

  13. G.S. Wilson, Meth. Enzymol. 54, 396 (1978).

    Article  Google Scholar 

  14. D. Zannoni, A. Baccarini-Melandri, B.A. Melandri, E.M. Evans, R.C. Prince and A.R. Crofts, FEBS Lett. 48, 152 (1974).

    Article  Google Scholar 

  15. P.L. Dutton, M. Erecinska, N. Sato, Y. Mukai, M. Pring, and D.F. Wilson, Biochim. Biophys. Acta 267, 15 (1972).

    Article  Google Scholar 

  16. K.I. Takamiya and P.L. Dutton, Biochim. Biophys. Acta, 546, 1 (1979).

    Article  Google Scholar 

  17. R.C. Prince and P.L. Dutton, Biochim. Biophys. Acta 462, 731 (1977).

    Article  Google Scholar 

  18. A. Baccarini-Melandri and B.A. Melandri, FEBS Lett. 80, 459 (1977).

    Article  Google Scholar 

  19. P.C. Hincke and P. Mitchell, J. Bioenerg. 1, 45 (1970).

    Article  Google Scholar 

  20. D. Walz, Biochim. Biophys. Acta 505, 279 (1979).

    Google Scholar 

  21. R.S. Caplan and A. Essig, Proc. Natl. Acad. Sci. U.S.A. 64, 211 (1969).

    Article  ADS  Google Scholar 

  22. S. Schuldiner, H. Rottenberg and M. Avron, Eur. J. Biochem. 25,64(1972).

    Article  Google Scholar 

  23. H. Rottenberg, Meth. Enzymol. 55, 547 (1979).

    Article  Google Scholar 

  24. P.A. Michel and W.N. Konings, Eur. J. Biochem. 85, 147 (1978).

    Article  Google Scholar 

  25. H. Rottengerg and T. Grünvald, Eur. J. Biochem. 25, 71 (1972).

    Article  Google Scholar 

  26. R. Casadio and B.A. Melandri, J. Bioenerg. Biomem. 9, 17 (1977).

    Article  Google Scholar 

  27. D.B. Kell, S.J. Ferguson and P. John, Biochim. Biophys. Acta 502, 111 (1978).

    Article  Google Scholar 

  28. R. Casadio, G. Venturoli and B.A. Melandri, Photobiochem. Photobiophys. 2, 245 (1981).

    Google Scholar 

  29. C.A. Wraight, R.J. Cogdell and B. Chance, in The Photosynthetic Bacteria, R.K. Clayton and W.R. Sistrom, (Editors) Plenum, New York 1978, p. 471.

    Google Scholar 

  30. J.B. Jackson and A.R. Crofts, FEBS Lett. 4, 185 (1969).

    Article  Google Scholar 

  31. W. Junge and H.T. Witt, Z. Naturforsch. Teil B 23, 244 (1968).

    Google Scholar 

  32. W. Liptay, Angew. Chem. Int. Ed. Eng. 8, 177 (1969).

    Article  Google Scholar 

  33. K. Matsmura and M. Nishimura, Biochim. Biophys. Acta 459, 483 (1977).

    Article  Google Scholar 

  34. A. Baccarini-Melandri, R. Casadio and B.A. Melandri, Eur. J. Biochem. 78, 389 (1977).

    Article  Google Scholar 

  35. V. Pick and M. Avron, Biochim. Biophys. Acta 440, 189 (1976).

    Article  Google Scholar 

  36. B. Chance, M. Baltscheffsky, J. Vanderkooi and W. Cheng, in Perspectives in Membrane Biology, S. Estrada and C. Gitler (Editors) Academic Press, New York (1974), p. 329.

    Google Scholar 

  37. B. Rumberg and H. Mühle, Bioelectrochem. Bioenerg. 3, 393 (1976).

    Article  Google Scholar 

  38. J.B. Jackson and A.R. Crofts, Eur. J. Biochem. 10, 226 (1969).

    Article  Google Scholar 

  39. J.B. Jackson and P.L. Dutton, Biochim. Biophys. Acta 325, 102 (1973).

    Article  Google Scholar 

  40. H.T. Witt, Biochim. Biophys. Acta 505, 355 (1979).

    Google Scholar 

  41. M. Schönfeld, M. Montal and G. Feher, Proc. Natl. Acad. Sei. U.S.A. 76, 6351 (1979).

    Article  ADS  Google Scholar 

  42. K.M. Petty and P.L. Dutton, Arch. Biochem. Biophys. 172, 346 (1976).

    Article  Google Scholar 

  43. R.C. Prince and P.L. Dutton, FEBS Lett. 65, 117 (1976).

    Article  Google Scholar 

  44. K.M. Petty, J.B. Jackson and P.L. Dutton, FEBS Lett. 84, 299 (1977).

    Article  Google Scholar 

  45. W. Ausländer and W. Junge, Biochim. Biophys. Acta 357, 285 (1974).

    Article  Google Scholar 

  46. K.M. Petty, J.B. Jackson and P.L. Dutton, Biochim. Biophys. Acta 546, 17 (1979).

    Article  Google Scholar 

  47. W. Ausländer and W. Junge, FEBS Lett. 59, 310 (1974).

    Article  Google Scholar 

  48. P.L. Dutton, Meth. Enzymol. 54, 410 (1978).

    Google Scholar 

  49. J.C. Reed and D.J. Cox, in The Enzymes, P.D. Boyer (Editor), Academic Press, New York, (1973) Vol. 1, p. 218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Melandri, B.A. (1983). Energetics of Biological Redox Reactions. In: Milazzo, G., Blank, M. (eds) Bioelectrochemistry I. Ettore Majorana Institutional Sciences Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3697-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3697-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3699-0

  • Online ISBN: 978-1-4613-3697-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics