Skip to main content

Abstract

It was not known until the discovery by William Herschel in 1800 that heat is a form of electromagnetic energy. Radiation in the infrared (IR) region with wavelength ranging from about 0.8 to 4000 μm constitutes that part of the electromagnetic spectrum which shows the greatest heating effect. Ever since this discovery, a large number of useful devices(1) have emerged. One very important class of these devices used for detection and imaging purposes is based on the fact that all bodies at temperatures above absolute zero emit radiation in the IR region which can be detected using suitable detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. L. Chopra and D. K. Pandya, Thin Solid Films 50, 81 (1978).

    Article  Google Scholar 

  2. E. H. Putley, in Topics in Applied Physics, Vol. 19: Optical and Infrared Detectors, R. J. Keyes, ed., Springer-Verlag, Berlin (1977), p. 82.

    Google Scholar 

  3. K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York (1969), p. 598.

    Google Scholar 

  4. K. L. Chopra and S. K. Bahl, Phys. Rev. Sect. B 1, 2545 (1970).

    Article  Google Scholar 

  5. K. L. Chopra and S. K. Bahl, J. Appl. Phys. 40, 4171 (1969).

    Article  Google Scholar 

  6. A. David Pearson, in Modern Aspects of the Vitreous State, Vol. 3, J. D. MacKensie, ed., Butterworths, Washington (1964), p. 29.

    Google Scholar 

  7. S. G. Bishop and W. J. Moore, Appl. Opt. 12, 80 (1973).

    Article  Google Scholar 

  8. T. D. Moustakas and G. A. N. Connell, J. Appl. Phys. 47, 1322 (1976).

    Article  Google Scholar 

  9. K. Yoshihara, Jpn. J. Appl. Phys. 14, Suppl. 14-1 (1975).

    Google Scholar 

  10. J. J. Brissot, F. Desvignes, and R. Martres, IEEE Trans. Electron. Devices 20, 613 (1978).

    Article  Google Scholar 

  11. J. J. Brissot and R. Martres, Ann. Chin. (Paris) 10, 185 (1975).

    Google Scholar 

  12. G. A. Zaitsev, V. G. Stashkov, and I. A. Krebtov, Cryogenics 16, 440 (1976).

    Article  Google Scholar 

  13. G. Gallinaro and R. Varona, Cryogenics 15, 292 (1975).

    Article  Google Scholar 

  14. M. Chester, Phys. Rev. 145, 76 (1966).

    Article  MathSciNet  Google Scholar 

  15. R. J. Von Gutfeld, A. H. Nethercot, Jr., and J. A. Armstrong, Phys. Rev. 142, 247 (1966).

    Google Scholar 

  16. M. Melloni, Ann. Phys. 28, 371 (1833).

    Google Scholar 

  17. K. L. Chopra and P. Nath, Phys. Status Solidi A 33, 333 (1976).

    Article  Google Scholar 

  18. S. K. Barthwal and K. L. Chopra, Phys. Status Solidi A 36, 533 (1976).

    Article  Google Scholar 

  19. K. L. Chopra, A. P. Thakoor, S. K. Barthwal, and P. Nath, Phys. Status Solidi A 40, 247 (1977).

    Article  Google Scholar 

  20. K. L. Chopra, S. K. Bahl, and M. R. Randlett, J. Appl. Phys. 39, 1525 (1968).

    Article  Google Scholar 

  21. R. K. Willardson and A. C. Beer, eds., Semiconductors and Semimetals, Vol. 5: Infrared Detectors, Academic Press, New York (1970); Vol. 12: Infrared Detectors (II), Academic Press, New York (1977).

    Google Scholar 

  22. D. Chen, G. N. Otto, and F. M. Schmit, IEEE Trans. Magn. MAG-9, 66 (1973).

    Article  Google Scholar 

  23. W. R. Harding, C. Hilsum, and D. C. Northrop, Nature 181, 691 (1958).

    Article  Google Scholar 

  24. K. Oe, Y. Toyoshima, and N. Nagai, J. Non-Cryst. Solids 20, 405 (1976).

    Article  Google Scholar 

  25. K. L. Chopra, P. K. Bhat, B. Singh, and S. Rajagopalan, Solid State Commun. 29, 167 (1979); J. Non-Cryst. Solids 35, 1053 (1980).

    Article  Google Scholar 

  26. T. Igo and Y. Toyoshima, J. Non-Cryst. Solids 11, 304 (1972).

    Article  Google Scholar 

  27. A. Yoshikawa, O. Ochi, H. Nagai, and Y. Mizushima, Appl. Phys. Lett. 29, 677 (1976).

    Article  Google Scholar 

  28. A. Hadni, J. Phys. 24, 694 (1963).

    Article  Google Scholar 

  29. A. Hadni, Y. Henninger, R. Thomas, P. Vergnat, and B. Wyncke, J. Phys. 26, 345 (1965).

    Article  Google Scholar 

  30. B. O. Seraphin, in Topics in Applied Physics, Vol. 31: Solar Energy Conversion, B. O. Seraphin, ed., Springer-Verlag, Berlin (1979), p. 5.

    Google Scholar 

  31. R. N. Schmidt, J. Spacecr. Rockets 2, 101 (1965).

    Article  Google Scholar 

  32. B. O. Seraphin and A. B. Meinel, in Optical Properties of Solids: New Developments, B. O. Seraphin, ed., North-Holland, Amsterdam (1976), p. 927.

    Google Scholar 

  33. L. E. Flordal and R. Kivaisi, Vacuum 27, 397 (1977).

    Article  Google Scholar 

  34. T. J. McMahon and S. W. Jasperson, Appl. Opt. 13, 2750 (1974).

    Article  Google Scholar 

  35. D. K. Pandya and K. L. Chopra, in Vacuum-Surfaces-Thin Films, K. L. Chopra and T. C. Goel, eds., Vanity Books, Delhi (1971).

    Google Scholar 

  36. D. C. Booth, D. D. Allerd, and B. O. Seraphin, Solar Energ. Mater. 2, 107 (1979).

    Article  Google Scholar 

  37. R. B. Goldner and H. M. Haskal, Appl. Opt. 14, 2328 (1975).

    Article  Google Scholar 

  38. S. N. Kumar, L. K. Malhotra, and K. L. Chopra, Solar Energ. Mater. 3, 519 (1980).

    Article  Google Scholar 

  39. P. K. Gogna, D. K. Pandya, and K. L. Chopra, Proceedings of the International Solar Energy Conference, New Delhi (1978), p. 842.

    Google Scholar 

  40. P. K. Gogna and K. L. Chopra, Thin Solid Films 63, 183 (1979).

    Article  Google Scholar 

  41. P. K. Gogna, Ph.D. Thesis, Indian Institute of Technology, Delhi (1980).

    Google Scholar 

  42. R. N. Schmidt, K. C. Park, and J. E. Janssen, Tech. Report, Wright-Patterson Air Force Base, ML-TDR-64-250 (1964).

    Google Scholar 

  43. G. B. Reddy, V. Dutta, D. K. Pandya, and K. L. Chopra, Solar Energ. Mater. 5, 187 (1981).

    Article  Google Scholar 

  44. S. N. Kumar, L. K. Malhotra, and K. L. Chopra, communicated to Solar Energ. Mater.

    Google Scholar 

  45. D. A. Williams, T. Lappin, and A. J. Duffie, Trans. ASME Ser. A, J. Eng. Power (July 1963), p. 213.

    Google Scholar 

  46. B. K. Gupta, R. Thangraj, and O. P. Agnihotri, Solar Energ. Mater. 1, 48 (1979).

    Google Scholar 

  47. B. O. Seraphin, in Proceedings of the Symposium on the Material Science Aspects of Thin Films Systems for Solar Energy Conversion, B. O. Seraphin, ed., Tucson, Arizona, July 1974.

    Google Scholar 

  48. G. D. Pettit, J. J. Cuomo, T. H. DiStefano, and J. M. Woodale, IBM J. Res. Dev. 22, 372 (1978).

    Article  Google Scholar 

  49. C. M. Horwitz, Opt. Commun. 11, 210 (1974).

    Article  Google Scholar 

  50. D. Pramanik, A. J. Sievers, and R. H. Silsbee, Solar Energ. Mater. 2, 81 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Chopra, K.L., Kaur, I. (1983). Thermal Devices. In: Chopra, K.L., Kaur, I. (eds) Thin Film Device Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3682-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3682-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3684-6

  • Online ISBN: 978-1-4613-3682-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics