Skip to main content

Intramolecular Processes in Isolated Polyatomic Molecules

  • Conference paper
Energy Storage and Redistribution in Molecules

Abstract

This paper deals with certain rather well known unimolecular processes which occur in isolated polyatomic molecules. These processes are (i) chemical reactions, forming fragments with identifiable internal and translational energy distributions, and (ii) the coupling of vibrational and electronic degrees of freedom, a phenomenon which is responsible for so-called radiationless transitions. The work is mainly experimental, and capitalizes on the fact that infrared lasers can be used to excite the vibrations of polyatomics in the absence of collisions. Thus, parent translational and rotational energies are near ambient, while vibrations can be excited rather easily, allowing us to measure elementary unimolecular processes of these species without interference from collisions. Although molecular excitation cannot be adjusted to yield monoenergetic species of excitation, still the “average excitation level” can be controlled, enabling us to determine effects qualitatively. Above dissociation threshold, the balance between the optical pumping rate and the dissociation rate results in a rather narrow range of energies from which dissociation occurs, and by adjusting the laser intensity the mean unimolecular rate can be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, R.V. Ambartzumian and V.S. Letokhov, in “Chemical and Biochemical Applications of Lasers, II” (C.B. Moore Ed., Academic Press, N.Y., 1977), and references cited therein.

    Google Scholar 

  2. H. Reisler, M.S. Mangir, and C. Wittig, unpublished.

    Google Scholar 

  3. H. Reisler and C. Wittig, Adv. Chem. Phys., in press.

    Google Scholar 

  4. M.H. Yu, H. Reisler, M. Mangir, and C. Wittig, Chem. Phys. Lett. 62, 439 (1979).

    Article  ADS  Google Scholar 

  5. M.H. Yu, M.R. Levy, and C. Wittig, J. Chem. Phys. 72, 3789 (1980).

    Article  ADS  Google Scholar 

  6. Y. Haas and G. Yahav, Chem. Phys. Lett. 48, 63 (1977).

    Article  ADS  Google Scholar 

  7. G. Yahav and Y. Haas, Chem. Phys. 31, 41 (1978).

    Article  ADS  Google Scholar 

  8. J.W. Hudgens, J.L. Durant Jr., D.J. Bogan, and R.A. Coveleskie, a) Bull. Am. Phys. Soc. 24, 638 (1979). b) J. Chem. Phys. 70, 5906 (1979).

    Google Scholar 

  9. R.V. Ambartzumian, Yu. A. Gorokhov, G.N. Makarov, A.A. Puretzky, and N.P. Furzikov, Chem. Phys. Lett. 45, 231 (1977).

    Article  ADS  Google Scholar 

  10. R.V. Ambartzumian, G.N. Makarov, and A.A. Puretzky, Appl. Phys. 22, 71 (1980).

    Article  ADS  Google Scholar 

  11. Z. Karny, A. Gupta, R.N. Zare, S.T. Lin, J. Nieman, and A.M. Ronn, Chem. Phys. 37, 15 (1979).

    Article  Google Scholar 

  12. J. Nieman and A.M. Ronn, Opt. Eng. 19, 39 (1980).

    Google Scholar 

  13. I. Burak and J.Y. Tsao, Chem. Phys. Lett. 77, 53 (1981).

    Article  Google Scholar 

  14. A. Nitzan and J. Jortner, a) Chem Phys. Lett. 60,1 (1978). b) J. Chem. Phys. 71, 3524 (1979)

    Article  ADS  Google Scholar 

  15. T.A. Watson, M. Mangir, C. Wittig, and M.R. Levy, J. Chem Phys., in press.

    Google Scholar 

  16. T.A. Watson, M. Mangir, C. Wittig, and M.R. Levy, J. Phys. Chem., in press.

    Google Scholar 

  17. S.W. Benson, private communication.

    Google Scholar 

  18. N.V. Chekalin, V.S. Dolzhikov, V.S. Letokhov, V.N. Lokhman, and A.N. Shibanov, Appl. Phys. 12, 191 (1977).

    Article  ADS  Google Scholar 

  19. J.H. Hall, Jr., M.L. Lesiecki, and W.A. Guillory, J. Chem. Phys. 68, 2247 (1978).

    Article  ADS  Google Scholar 

  20. N.V. Chekalin, V.S. Letokhov, V.N. Lokhman, and A.N. Shibanov, Chem. Phys. 36, 415 (1979).

    Article  Google Scholar 

  21. S.V. Filseth, J. Danon, D. Feldmann, J.D. Campbell, and K.H. Welge, Chem. Phys. Lett. 66, 329 (1979).

    Article  ADS  Google Scholar 

  22. C.R. Quick, Jr., A.B. Horwitz, R.E. Weston, Jr., and G.W. Flynn, Chem. Phys. Lett. 72, 352 (1980); see also references cited therein.

    Article  ADS  Google Scholar 

  23. C. Reiser, F.M. Lussier, C.G. Jensen, and J.I. Steinfeld, J. Am. Chem. Soc. 101, 350 (1979).

    Article  Google Scholar 

  24. Aa.S. Sudbo, P.A. Schulz, E.R. Grant, Y.R. Shen, and Y.T. Lee, J. Chem. Phys. 68, 1306 (1978).

    Article  ADS  Google Scholar 

  25. J. Caballero and C. Wittig, submitted.

    Google Scholar 

  26. M. Spoliti, J.H. Thirtle, and T.M. Dunn, J. Mol. Spectr. 52, 146 (1974).

    Article  ADS  Google Scholar 

  27. V.E. Bondybey, Chem. Phys. 18, 293 (1974).

    Article  ADS  Google Scholar 

  28. J.R. McDonald, Chem. Phys. 19, 423 (1975).

    Article  ADS  Google Scholar 

  29. R.N. Dixon and C.R. Webster, J. Mol. Spectr. 62, 271 (1976).

    Article  ADS  Google Scholar 

  30. W.R. Gentry and C.F. Giese, Rev. Sci. Instr. 49, 595 (1978).

    Article  ADS  Google Scholar 

  31. E.A. Entemann and D.R. Herschbach, Disc. Farad. Soc. 44, 289 (1967).

    Article  Google Scholar 

  32. S.A. Safron, N.D. Weinstein, D.R. Herschbach, and J.C. Tully, Chem. Phys. Lett. 12, 564 (1972),

    Article  ADS  Google Scholar 

  33. Aa.S. Sudbo, P.A. Schulz, E.H. Grant, Y.R. Shen, and Y.T. Lee, J. Chem. Phys. 70, 912 (1979).

    Article  ADS  Google Scholar 

  34. Aa.S. Sudbo, P.A. Schulz, Y.R. Shen, and Y.T. Lee, J. Chem. Phys. 69, 2312 (1978).

    Article  ADS  Google Scholar 

  35. G. Herzberg, “Electronic Spectra of Polyatomic Molecules” ( Van Nostrand, N.Y., 1966 ).

    Google Scholar 

  36. S. Trajmar, J.K. Rice, P.S.P. Wei, and A. Kuppermann, Chem. Phys. Lett. 1, 703 (1968).

    Article  ADS  Google Scholar 

  37. D. Demoulin, Chem. Phys. 11, 329 (1975).

    Article  ADS  Google Scholar 

  38. W.R.M. Graham, K.I. Dismuke, and W. Weltner, Jr., J. Chem. Phys. 60, 3817 (1974).

    Article  ADS  Google Scholar 

  39. M. Okabe, J. Chem. Phys. 62 2782 (1975).

    Article  ADS  Google Scholar 

  40. K.H. Becker, D, Maaks, and M. Shurgers, Z. Naturforsch. 26a, 1770 (1977).

    ADS  Google Scholar 

  41. J.R. McDonald, A.P. Baronavski, and V.M. Donnelly, Chem. Phys. 33, 161 (1978).

    Article  Google Scholar 

  42. S. Shingkuo, S.D. Peyerimhoff, and R.J. Buenker, J. Mol. Spectr. 74, 124 (1979).

    Article  ADS  Google Scholar 

  43. M.E. Jacox, Chem. Phys. 7, 424 (1975).

    Article  ADS  Google Scholar 

  44. H. Reisler, M. Mangir, and C. Wittig, Chem Phys. 47, 49 (1980).

    Article  Google Scholar 

  45. V.A. Job and G.W. King, J. Mol. Spectr. 19, 155, 178 (1966).

    Article  ADS  Google Scholar 

  46. M. Guelin and P. Thaddeus, Astrophys. J. 212, L81 (1977).

    Article  ADS  Google Scholar 

  47. S. Wilson and S. Green, Astrophys. J. 212, L87 (1977).

    Article  ADS  Google Scholar 

  48. R. Thomson and P.A. Warsop, Trans. Farad. Soc. 65, 2806 (1969).

    Article  Google Scholar 

  49. J.L. Lyman, J.W. Hudson, and S.M. Freund, Opt. Commun. 21, 119 (1977).

    Article  ADS  Google Scholar 

  50. D.S. King and J.C. Stephenson, Chem. Phys. Lett. 66, 33 (1979).

    Article  ADS  Google Scholar 

  51. A.M. Renlund, H. Reisler, and C. Wittig, Chem Phys. Lett. 78, 40 (1981).

    Article  ADS  Google Scholar 

  52. H. Reisler, M.S. Mangir, and C. Wittig, J. Chem. Phys. 71, 2109 (1979).

    Article  ADS  Google Scholar 

  53. R.A. Dougal, C.R. Jones, M. Gundersen and L.Y. Nelson, Appl. Optics 18, 1311 (1979).

    Article  ADS  Google Scholar 

  54. H. Reisler, F. Kong, A.M. Renlund and C. Wittig, submitted.

    Google Scholar 

  55. G. Herzberg, “Molecular Spectra and Molecular Structure, Vol. 1, Spectra of Diatomic Molecules” (Van Nostrand, Princeton, 1950).

    Google Scholar 

  56. C.M. Miller and R.N. Zare, Chem. Phys. Lett. 71, 376 (1980).

    Article  ADS  Google Scholar 

  57. M.N.R. Ashfold, G. Hancock, and M.L. Hardaker, J. Photochem. 14, 85 (1980).

    Article  Google Scholar 

  58. W.L. Hase and D.L. Bunker, Quantum Chemistry Program Exchange, No. 234.

    Google Scholar 

  59. See, e.g., P.J. Robinson and K.A. Holbrook, “Unimolecular Reactions”, (Wiley Interscience, N.Y. 1972); W. Forst, “Theory of Unimolecular Reactions” (Academic Press, N.Y. 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this paper

Cite this paper

Levy, M.R., Renlund, A.M., Watson, T.A., Mangir, M.S., Reisler, H., Wittig, C. (1983). Intramolecular Processes in Isolated Polyatomic Molecules. In: Hinze, J. (eds) Energy Storage and Redistribution in Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3667-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3667-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3669-3

  • Online ISBN: 978-1-4613-3667-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics