Some Kinetic and Spectroscopic Evidence on Intramolecular Relaxation Processes in Polyatomic Molecules

  • Martin Quack


The description and definition of intramolecular vibrational relaxation processes is discussed within the framework of the quantum mechanical and statistical mechanical equations of motion. The evidence from quite different experimental sources is summarized under the common aspect of vibrational relaxation. Although much of the evidence remains ambiguous, there is good indication that a localized vibrational excitation relaxes typically in 0.1 to 10 ps, which is long compared to the classical vibrational period but short compared to many optical and reactive processes.


Polyatomic Molecule Vibrational Excitation Vibrational Relaxation Unimolecular Reaction Pauli Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Quack and J. Troe, in “Gas Kinetics and Energy Transfer” 2:175 (1977) ( P.G. Ashmore and R.J. Donovan eds.) The Chemical Society, London.Google Scholar
  2. 2.
    M. Kneba and J. Wolfrum Ann. Rev. Phys. Chem. 31: 47 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Rice, in “Excited States” (E.C. Lim ed.), Academic Press, New York (1975)Google Scholar
  4. 4.
    H.R. Dubai and M. Quack, Chem. Phys. Lett. 72:342 (1980), and to be publishedADSCrossRefGoogle Scholar
  5. 5.
    C. Trie, Chem. Phys. 1U: 189 (1976); F. Lahmani, A. Tramer, J. Chem. Phys. 60: 4431 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    A. Messiah, “Mecanique Quantique”, Dunod, Paris (1969); P.O. Löwdin, Advan. Quantum Chem. 8:323 (1967)Google Scholar
  7. 7.
    G.H. Hardy, and E.M. Wright, “An Introduction to the Theory of Numbers”, Oxford University Press, London (1958)Google Scholar
  8. 8.
    W. Pauli, in “Probleme der Modernen Physik”, P. Debeye ed., Hirzel, Leipzig (1928)Google Scholar
  9. 9.
    M. Quack, to be publishedGoogle Scholar
  10. 10.
    M. Quack, J. Chem. Phys. 69:1281 (1978)ADSCrossRefGoogle Scholar
  11. 11.
    R. Zwanzig, Physica (Utrecht), 30: 1109 (1964)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    R. Ramaswamy, S. Augustin, and H. Rabitz, J. Chem. Phys. 69:5509 (1978)ADSCrossRefGoogle Scholar
  13. 13.
    B. Carmeli, I. Schek, A. Nitzan, and J. Jortner, J. Chem. Phys. 72:1928 (1980); S. Mukamel, J. Chem. Phys. 71:2012 (198O)ADSCrossRefGoogle Scholar
  14. 14.
    M. Quack and J. Troe, in “Theoretical Chemistry, Advances and Perspectives”, 6B:199 (1981), D. Henderson ed., Academic Press, New YorkGoogle Scholar
  15. 15.
    M. Quack, Mol. Phys. 34:477 (1977); and to be publishedGoogle Scholar
  16. 16.
    J.D. Ryribrandt, and B.S, Rabinovitch, J. Phys. Chem. 75: 2164 (1971)CrossRefGoogle Scholar
  17. 17.
    K. Freed, Far. Disc. Chem. Soc. 67:231(1979)Google Scholar
  18. 18.
    K. Shobatake, Y.T. Lee, and S.A. Rice, J. Chem. Phys. 59:1435 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    R.J. Buss, and Y.T. Lee, J. Phys. Chem. 83:34 (1979); R.J. Buss, M.J. Coggiola, and Y.T. Lee, Far. Disc. Chem. Soc. 67:221 (1979)CrossRefGoogle Scholar
  20. 20.
    M. Quack, Chem. Phys. 51: 353 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    Ch. Schlier, atthis conference; D. Gerlich, U. Nowotny, Ch. Schlier, and E. Teloy, Chem. Phys. 47: 245 (1980)CrossRefGoogle Scholar
  22. 22.
    F.A. Lindemann, Trans. Far. Soc. 17: 598 ( 1922)CrossRefGoogle Scholar
  23. 23.
    J. Troe, in “Physical Chemistry an Advanced Treatise”, Vol. 6 B, W. Jost ed., Academic Press, New York (1975)Google Scholar
  24. 24.
    P.A. Schulz, A.S. Sudbo, D.J. Krajnovitch, H.S. Kwok, Y.R. Shen, and Y.T. Lee, Ann. Rev. Phys. Chem. 30:379 (1979)ADSCrossRefGoogle Scholar
  25. 25.
    H. Hippler, K. Luther, J. Troe, and R. Walsh, J. Chem. Phys. 68:323 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    R.A. Marcus, and O.K. Rice, J. Phys. Colloid. Chem. 55: 894 (1951)CrossRefGoogle Scholar
  27. 27.
    H.E. van den Bergh, A.B. Callear, and R.J. Norstrom, Chem. Phys. Lett, 4: 101 (1969); K. Glänzer, M. Quack, and J. Troe, Symp. Int. Comb. 16: 949 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    J. Troe, Ann. Rev. Phys. Chem. 29:223 (1978); H.O. Pritchard, in “Reaction Kinetics”, Vol. 1, P.G. Ashmore ed. the Chemical Society, London (1975)ADSCrossRefGoogle Scholar
  29. 29.
    H.M Rosenstock, M.B. Wallenstein, A.L. Wahrhaftig, and H. Eyring, Proc. Nat. Acad. Sci. USA, 38:667 (1952)ADSCrossRefGoogle Scholar
  30. 30.
    M. Quack, and J. Troe, Ber. Bunsenges. Phys. Chem. 79:469 (1975)Google Scholar
  31. 31.
    K. G. Kay, J. Chem. Phys. 64:2112 (1976)ADSCrossRefGoogle Scholar
  32. 32.
    W. H. Miller, at this conference, B.A. Waite, and W.H. Miller, J. Chem. Phys. 73: 3713 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    G.R. Fleming, O.L.J. Gijzeman, and S.H. Lin, J. Chem. Soc. Far. Trans. II, 70:37 (1947)Google Scholar
  34. 34.
    M. Quack, and J. Troe, Ber. Bunsenges. Physik. Chem. 78:240 (1974)Google Scholar
  35. 35.
    B. Kpainsky and W. Kaiser, Chem. Phys. Lett. 66:39 (1979); J. P. Maier, A. Seilmeier, A. Lauberau, and W. Kaiser, Chem. Phys. Lett. H6:527 (1977)ADSCrossRefGoogle Scholar
  36. 36.
    T.J. Aartsma, W.H. Hesselink, and D.A. Wiersma, Chem. Phys. Lett. 71:424(1980); K. Luther, and W. Wieters, J. Chem. Phys. 73:4172 (1980)ADSCrossRefGoogle Scholar
  37. 37.
    C.S. Parmenter, and M.W. Schyler, J. Chem. Phys. 52:5366 (1970)Google Scholar
  38. 38.
    H.F. Kemper and M. Stockburger, Ber. Bunsenges. Phys Chem. 72:1044 (1968)Google Scholar
  39. 39.
    M. Stockburger, in “Organic Molecular Photophysics” J. Birks ed., Wiley, New York (1973)Google Scholar
  40. 40.
    M. Quack and M. Stockburger, J. Mol. Spectrosc. 43:87 (1972)ADSCrossRefGoogle Scholar
  41. 41.
    D.A. Chernoff and S.A. Rice, J. Chem. Phys. 70:2511 (1979)ADSCrossRefGoogle Scholar
  42. 42.
    D.E. Powers, J.B. Hopkins, and R.E. Smālley, J. Chem. Phys. 72:5721 (1980)ADSCrossRefGoogle Scholar
  43. 43.
    D.H. Levy, at this conference and Ann. Rev. Phys. Chem. 31:197 (1980)ADSCrossRefGoogle Scholar
  44. 44.
    J.B. Coon, R.E. De Wames, and C.M. Loyd, J. Mol. Spectrosc. 8:285 (1962)ADSCrossRefGoogle Scholar
  45. 45.
    J.B. Hopkins, D.E. Powers, S. Mukamel, and R.E. Smalley, J. Chem. Phys. 72:5049 (1980)ADSCrossRefGoogle Scholar
  46. 46.
    R.A. Coveleskie, D.A. Dolson, and C.S. Parmenter, J. Chem. Phys. 72:5774 (198O)CrossRefGoogle Scholar
  47. 47.
    A. Weller, Ber. Bunsenges, Phys. Chem. 56:662 (1952); Z. Physik. Chem. 15:438 (1958)Google Scholar
  48. 48.
    B.R. Henry and W. Siebrand, J. Chem. Phys. 49:5369 (1968); B. R. Henry, Acc. Chem. Res. 10:207 (1977)Google Scholar
  49. 49.
    G. Herzberg, “Molecular Spectra and Molecular Structure” Vol. Ill, van Nostrand, New York (1966)Google Scholar
  50. 50.
    J. Jortner, S.A. Rice, and R.H. Hochstrasser, Adv. Photochem. 7:1969 (1969)Google Scholar
  51. 51.
    A. Abragam, “Principles of Nuclear Magnetism”, Oxford U.P., London (1961)Google Scholar
  52. 52.
    R.G. Bray, and M.J. Berry, J. Chem. Phys. 71:4909 (1979)ADSCrossRefGoogle Scholar
  53. 53.
    D. Heller, at this conferenceGoogle Scholar
  54. 54.
    S. Mukamel, at this conferenceGoogle Scholar
  55. 55.
    In this series of experiments we had also measured the CH fun-damental and first overtone of pentafluorobenzene. In the fundamental at a resolution of 0.06 cm-1 there was only broad structure, therefore our interpretation is the same as for (CF3)3Hand the other molecules in this series4. D. Heller53 reported a spectrum of the fundamental of pentafluorobenzene with “sharp rotational” structure, which is not in good agreement with neither our experimental results nor our interpretation of the vibrational structureGoogle Scholar
  56. 56.
    H.J. Bernstein and G. Herzberg, J. Chem. Phys. 16:30 (1948)ADSCrossRefGoogle Scholar
  57. 57.
    E.J. Heller, at this conference; E.J. Heller, E.B. Stechel, and M.J. Davis, J. Chem. Phys. 00: 000 (1980)MathSciNetGoogle Scholar
  58. 58.
    W. Heisenberg, “Physikalische Prinzipien der Quantentheorie;”, BI, Mannheim (1958)Google Scholar
  59. 59.
    P. Pfeifer, at this conferenceGoogle Scholar
  60. 60.
    P.J. Nagy and W.L. Hase, Chem. Phys. Lett. 54:73 (1978)ADSCrossRefGoogle Scholar
  61. 61.
    R.T. Lawton and M.S. Child, I1 Nuovo Cimento 00:000 (1980) (Abstracts from the European Conference on the Dynamics of Excited States, Pisa, 1980)Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Martin Quack
    • 1
  1. 1.Institut für Physikalische Chemie der UniversitätGöttingenWest Germany

Personalised recommendations