Skip to main content

Theoretical Analysis of Experimental Probes of Dynamics of Intramolecular Vibrational Relaxation

  • Conference paper
Energy Storage and Redistribution in Molecules

Abstract

The phenomenon of intramolecular vibrational relxation is postulated to play a central role in the description of unimolecular reaction processes of polyatomic molecules. For instance, the famous RRKM theory is generally presented as being predicated on the assumption that vibrational energy is rapidly randomized among the different vibrational degrees of freedom on time scales which are rapid compared to the decomposition times of these molecules.1, 2 A number of different theoretical approaches have been undertaken to understand better the phenomena of vibrational energy scrambling in molecules. Other talks at this conference discuss the transition from quasiperiodic to stochastic behavior in classical mechanical descriptions of vibrational energy in molecules with the hopes that in an as yet undefined fashion this is somehow relevant to the description of energy randomization processes occurring in real molecules under experimental conditions. This lecture is concerned with providing a theoretical basis for understanding recent experiments on intra-molecular vibrational relaxation.

Suported, in part, by NSF Grant CHE80-23456 and the U.S.-Israel Binational Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Robinson and K. A. Holbrook, Unimolecular Reactions, Wiley, Newufork, 1972.

    Google Scholar 

  2. I. Oref and G. S. Rabinovitch, Acc. Chem. Res. 12, 166 (1979) and references therein.

    Article  Google Scholar 

  3. K. F. Freed, Faraday Discuss. Chem. Soc. 67, 231 (1979).

    Article  Google Scholar 

  4. J. D. Rybrant and B. S. Rabinovitch, J. Chem. Phys. J54, 2275 (1971); J. Phys Chem. 75, 2164 (1971).

    ADS  Google Scholar 

  5. J. B. Hopkins, D. E. Powers and R. E. Smalley, J. Chem. Phys. 71 3886 (1979); 72, 2905 (E) (1980); (b) J. B. Hopkins, D. E.Powers, S. Mukamel, and R. E. Smalley, J. Chem. Phys. 72:, 5049 (1980); (c) J. B. Hopkins, D. E. Powers and R. E. Smalley, J. Chem. Phys. 73, 683 (1980).

    Article  ADS  Google Scholar 

  6. S. Mukamel and R. E. Smalley, J. Chem. Phys. 73, 4156 (1980); S. Mukamel, Solid-State Sci. 18, 237 (1980).

    Article  ADS  Google Scholar 

  7. S. Okajima and E. C. Lim, Chem. Phys. Lett. 37, 403 (1976).

    Article  ADS  Google Scholar 

  8. R. K. Sander, B. Soep and R. N. Zare, J. Chem. Phys. 64, 1242 (1976).

    Article  ADS  Google Scholar 

  9. B. Soep, C. Michel, A. Tramer, and L. Lindqvist, Chem. Phys. 2, 293 (1973).

    Article  Google Scholar 

  10. J. C. Hsieh, C. S. Huang and E. C. Lim, J. Chem. Phys. 60, 4345 (1974):

    Article  ADS  Google Scholar 

  11. J. W. Perry and A. H. Zewail, J. Chem. Phys. 70, 582 (1979); Chem. Phys. Lett. 65, 31 (1980).

    Google Scholar 

  12. R. G. Bray and M. J. Berry, J. Chem. Phys. 71, 4909 (1979).

    Article  ADS  Google Scholar 

  13. J. P. Maier, A. Seilmeir, A. Laubereau and W. Kaiser, Chem. Phys. Lett. 46, 527 (1977).

    Article  ADS  Google Scholar 

  14. B. Kopainsky and W. Kaiser, Chem. Phys. Lett. 66, 39 (1979).

    Article  ADS  Google Scholar 

  15. R. A. Coveleskie, D. A. Dolson and C. S. Parmenter, J. Chem. Phys. 72, 5774 (1980).

    Article  ADS  Google Scholar 

  16. H. S. Kwok and E. Yablonovitch, Phys. Rev. Lett. 41, 745 (1978).

    Article  ADS  Google Scholar 

  17. T. F. Deutch and S. J. Brueck, Chem. Phys. Lett. 54, 258 (1978); D. S. Frankel, J. Chem. Phys. 65, 1696 (1976).

    Google Scholar 

  18. K. F. Freed, Topics Appl. Phys. 15, 23 (1976); Acc. Chem. Res. 11, 74 (1976); Adv. Chem. Phys. 42, 207 (1980).

    Article  Google Scholar 

  19. S. Mukamel and J. Jortner, in Excited States, ed. E. C. Lim, Academic Press, New York, 1977.

    Google Scholar 

  20. P. Avouris, W. M. Gelbart and M. A. El-Sayed, Chem. Rev. 77, 793 (1977).

    Article  Google Scholar 

  21. K. F. Freed, Chem. Phys. Lett. 42, 600 (1976).

    Article  ADS  Google Scholar 

  22. S. Mukamel and J. Jortner, J. Chem. Phys. 65, 5204 (1976).

    Article  ADS  Google Scholar 

  23. K. F. Freed and A. Nitzan, J. Chem. Phys. 73, 4765 (1980).

    Article  ADS  Google Scholar 

  24. S. A. Rice, this volume.

    Google Scholar 

  25. K. F. Freed, J. Chem. Phys. 52, 1345 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Nitzan, J. Jortner and P. Rentzepis, Proc. R. Soc. (London) A37, 367 (1972); A. Frad, F. Lahmani, A. Tramer and C. Trie, J. Chem. Phys. 60, 4419 (1974); R. van der Werf and J. Komman-deur, Chem. Phys. 16, 125 (1976).

    ADS  Google Scholar 

  27. K. F. Freed (unpublished); G. Atkinson (private communication); S. Leach (private communication).

    Google Scholar 

  28. B. Carneli, I. Scheck, A. Nitzan and J. Jortner, J. Chem. Phys. 71, 1928 (1980); W. M. Gelbart, D. F. Heller and M. L. Elert, Chem. Phys. 71, 116 (1975).

    Article  ADS  Google Scholar 

  29. A. Villaeys and K. F. Freed, Chem. Phys., 13, 271 (1976).

    Article  Google Scholar 

  30. P. S. H. Fitch, C. A. Haynam and D. H. Levy, J. Chem. Phys. 73, 1064 (1980);(in press).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this paper

Cite this paper

Freed, K.F., Nitzan, A. (1983). Theoretical Analysis of Experimental Probes of Dynamics of Intramolecular Vibrational Relaxation. In: Hinze, J. (eds) Energy Storage and Redistribution in Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3667-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3667-9_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3669-3

  • Online ISBN: 978-1-4613-3667-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics