Skip to main content

Molecular Structure Derived from First-Principles Quantum Mechanics: Two Examples

  • Conference paper
Energy Storage and Redistribution in Molecules

Abstract

It is shown how the classical concept of molecular structure finds a natural setting in quantum theory in terms of superselection rules, and how the latter can be understood in a variety of cases as result of the universal coupling of molecules to the radiation field. Particularly favorable conditions for this mechanism to be operative arise in large assemblies of closely packed identical molecules (cooperative effect). Specific examples include the symmetry breaking in chiral molecules and the localization of the electron in H +2 for widely separated nuclei. Finally, an experiment is proposed to check some of the predictions of this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Hund, Zur Deutung der Molekelspektren, III, Z. Phys. 43: 805 (1927).

    Article  ADS  Google Scholar 

  2. L. Rosenfeld, Quantenmechanische Theorie der natürlichen optischen Aktivität von Flüssigkeiten und Gasen, Z. Phys. 52: 161 (1929).

    Article  ADS  Google Scholar 

  3. M. Born and P. Jordan, “Elementare Quantenmechanik,” Springer, Berlin (1930): § 47.

    MATH  Google Scholar 

  4. H. Hellmann, “Einführung in die Quantenchemie,” Deuticke, Leipzig (1937): p. 300.

    Google Scholar 

  5. “The theory of molecular structure and bonding,” R. Pauncz and E.A. Halevi, eds., Israel J. Chem. 19: No. 1–4 (1980).

    Google Scholar 

  6. “Quantum dynamics of molecules,” R.G. Woolley, ed., Plenum Press, New York (1980).

    Google Scholar 

  7. P. Claverie and S. Diner, The concept of molecular structure in quantum theory: interpretation problems, in: Ref. 5.

    Google Scholar 

  8. C.J. Ballhausen and A.E. Hansen, Electronic spectra, Annual Rev. Phys. Chem. 23: 15 (1972).

    Article  ADS  Google Scholar 

  9. J.M. Combes and R. Seiler, Spectral properties of atomic and molecular systems, in: Ref. 6.

    Google Scholar 

  10. L. Lathouwers and P. Van Leuven, Generator coordinate theory of diatomic molecules, in: Ref. 6. L. Lathouwers, On body-fixed frames and angular momentum projection operators, J. Phys. A 13: 2287 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  11. E.B. Davies, Symmetry breaking for a nonlinear Schrödinger equation, Commun. math. Phys. 64: 191 (1979). E.B. Davies, Metastable states of molecules, Commun. math. Phys. 75: 263 (1980).

    Article  ADS  MATH  Google Scholar 

  12. R.G. Woolley, Quantum mechanical aspects of the molecular structure hypothesis, in: Ref. 5.

    Google Scholar 

  13. E. Gerjuoy, Is the principle of superposition really necessary?, in: “Contemporary research in the foundations and philosophy of quantum theory,” C.A. Hooker, ed., Reidel Publ. Co., Dordrecht (1973).

    Google Scholar 

  14. R.A. Harris, Manifestations of parity violations in atomic and molecular systems, in: Ref. 6.

    Google Scholar 

  15. R.F. Streater and A.S. Wightman, “PCT, spin and statistics, and all that,” Benjamin, New York (1964): § 1. 1.

    MATH  Google Scholar 

  16. H. Primas, Foundations of theoretical chemistry, in: Ref. 6.

    Google Scholar 

  17. J.M. Jauch, “Foundations of quantum mechanics,” Addison-Wesley, Reading (1968): § 15. 3.

    MATH  Google Scholar 

  18. P. Pfeifer, “Chiral molecules - a superselection rule induced by the radiation field,” Thesis no. 6551, ETH, Zürich (1980).

    Google Scholar 

  19. J. Hinze: At this conference.

    Google Scholar 

  20. E.H. Lieb, Exactly soluble models, Physica 73: 226 (1974).

    Article  ADS  Google Scholar 

  21. K. Hepp and E.H. Lieb, Equilibrium statistical mechanics of matter interacting with the quantized radiation field, Phys. Rev. A 8: 2517 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Quack: At this conference.

    Google Scholar 

  23. E.M. Harrell, Double wells, Commun. math. Phys. 75: 239 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. P. Pfeifer, A nonlinear Schrödinger equation yielding the ‘shape of molecules’ by spontaneous symmetry breaking, in: “Classical, semiclassical and quantum mechanical problems in mathematics, chemistry and physics,” K. Gustafson and W.P. Reinhardt, eds., Plenum Press, New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this paper

Cite this paper

Pfeifer, P. (1983). Molecular Structure Derived from First-Principles Quantum Mechanics: Two Examples. In: Hinze, J. (eds) Energy Storage and Redistribution in Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3667-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3667-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3669-3

  • Online ISBN: 978-1-4613-3667-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics