Microwave Studies of Molecular Ions

  • R. Claude Woods


For stable neutral molecules in the gas phase microwave spectroscopy has for about three decades provided the most reliable and precise information available on molecular structure and internal properties, e.g., dipole moments, hyperfine interaction constants, or barriers to internal rotation or inversion. Rotational transitions, which are sensitive to the molecule’s moments of inertia and thus its structure, are observed directly and with very high resolution, so that their frequencies can be measured with great accuracy. The experimental frequencies are so exact, in fact, that the accuracy of the microwave structure obtained is always limited by the theoretical problems associated with the vibration-rotation interaction (non-rigidity) in the molecule rather than experimental errors.


Discharge Tube Rotational Temperature Microwave Spectroscopy Liquid Nitrogen Cool Lineshape Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. A. Dixon and R. C. Woods, Phys. Rev. Lett. 34, 61 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, Phys. Rev. Lett. 35, 1269 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    R. J. Saykally, T. A. Dixon, T. G. Anderson, P. G. Szanto, and R. C. Woods, Ap. J. Lett. 205, 101 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    R. C. Woods, Rev. Sci. Instrum. 44, 282 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    R. C. Woods and T. A. Dixon, Rev. Sci. Instrum. 45, 1122 (1974).CrossRefGoogle Scholar
  6. 6.
    A. Carrington, D. R. J. Milverton, and P. J. Sarre, Mol. Phys. 35, 1505 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    D. Buhl and L. E. Snyder, Nature 228, 267 (1970).ADSCrossRefGoogle Scholar
  8. 8.
    W. Klemperer, Nature 227, 1230 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    L. E. Snyder, J. M. Hollis, B. L. Ulich, F. T. Lovas, and D. Buhl, Bull. Am. Astron. Soc. 7, 497 (1975).ADSGoogle Scholar
  10. 10.
    J. M. Hollis, L. E. Snyder, F. J. Lovas, and D. Buhl, Ap. J. Lett. 209, 83 (1976).ADSCrossRefGoogle Scholar
  11. 11.
    W. D. Langer, R. W. Wilson, P. S. Henry, and M. Guelin, Ap. J. Lett. 225, 139 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    B. E. Turner, Ap. J. Lett. 193, 83 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    S. Green, J. A. Montgomery, and P. Thaddeus, Ap. J. Lett. 193, 89 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    T. G. Anderson, T. A. Dixon, N. D. Piltch, R. J. Saykally, P. G. Szanto, and R. C. Woods, Ap. J. Lett. 216, 85 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    L. E. Snyder, J. M. Hollis, D. Buhl, and W. D. Watson, Ap. J. Lett. 218, 61 (1977).ADSCrossRefGoogle Scholar
  16. 16.
    H. M. Pickett and T. L. Boyd, Chem. Phys. Lett. 58, 446 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    H. M. Pickett, Rev. Sci. Instrum. 48, 706 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    T. G. Anderson, C. S. Gudeman, T. A. Dixon, and R. C. Woods, J. Chem. Phys. 72, 1332 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. Claude Woods
    • 1
  1. 1.Department of ChemistryUniversity of WisconsinMadisonUSA

Personalised recommendations