Single-Mode Optical Fiber Technology II. Silica-Based Single-Mode Fiber Technology, Loss and Polarization Properties

  • P. J. Severin
Part of the NATO Advanced Studies Institutes Series book series (volume 91)


In silica-based fiber technology four different processes are actually used on a routine basis for preform manufacturing: the outside vapour phase oxidation processes (OVPO), a special version of which is the vapour phase axial deposition process (VAD), and the inside vapour phase oxidation process (IVPO), based either on modified chemical vapour phase deposition (MCVD) or on plasma activated chemical vapour phase deposition (PCVD). Only the VAD process yields a massive but porous rod. In the other three methods a hollow tube is produced, from which the preform is obtained by collapsing for MCVD and PCVD. With OVPO the hole disappears upon drawing. Drawing technology will be discussed in the next lecture, where the double-crucible method will be considered. Each of these fabrication techniques has its own typical advantages and disadvantages, the relative merits of which can only be assumed with respect to a specified requirement. In this lecture the yardstick is their capability to produce single-mode (SM) fibers economically. SM fibers are attractive as future high-capacity, long-distance transmission lines with low-loss and hence large repeater distances.


Chemical Vapour Deposition Process Birefringent Fiber Waveguide Dispersion Beat Length Porous Preform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.C. Schultz, Proc. IEEE. 68: 1187 (1980).CrossRefGoogle Scholar
  2. 2.
    D. Charlton and P.C. Schultz, Electr. Opt. Syst.Des. 12: 12, 23 (1980).Google Scholar
  3. 3.
    B.P. Pal, Fiber and Integr.Opt. 2: 195 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    T. Izawa, T. Miyashita and F. Hanawa, US. Pat. 4: 062, 665 (1977)Google Scholar
  5. 5.
    T. Izawa and N. Inagaki, Proc. IEEE. 68: 1184 (1980).CrossRefGoogle Scholar
  6. 6.
    T. Edahiro, S. Sudo, M. Kawachi, K. Jinguji and N. Inagaki, Electr.Lett. 15: 726 (1979).CrossRefGoogle Scholar
  7. 7.
    S. Tomaru, M. Kawachi and T. Edahiro, Electr.Lett. 16: 511 (1980).CrossRefGoogle Scholar
  8. 8.
    S. Tomaru, M. Yasu, M. Kawachi and T. Edahiro, Electr.Lett. 17: 93 (1981).CrossRefGoogle Scholar
  9. 9.
    M. Kawachi, S. Tomaru, M. Yasu, M. Horiguchi, S. Sakaguchi and T. Kimura, Electr.Lett. 17: 57 (1981).CrossRefGoogle Scholar
  10. 10.
    J.B. MacChesney, P.B. O’Connor, F.V. Di Marcello, J.R. Simpson and P.D. Lazay, X th Int. Congr. Glass, Tokyo. 6–40 (1974).Google Scholar
  11. 11.
    J.B. MacChesney, Proc. IEEE. 68: 1181 (1980).CrossRefGoogle Scholar
  12. 12.
    T. Miya, Y. Terunuma, T. Hosaka and T. Miyashita, Electr.Lett. 15: 106 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    B.J. Ainslie, C.R. Day, P.W. France, K.J. Beales and G.R. Newns, Electr.Lett. 15: 411 (1979).CrossRefGoogle Scholar
  14. 14.
    J. Irven, A.P. Harrison and C.R. Smith, Electr.Lett. 17: 3 (1981).CrossRefGoogle Scholar
  15. 15.
    B.J. Ainslie, C.R. Day, J. Rush and K.J. Beales, Electr.Lett. 16: 692 (1980).CrossRefGoogle Scholar
  16. 16.
    J. Irven, Electr.Lett. 17: 2 (1981).CrossRefGoogle Scholar
  17. 17.
    D. Küppers, H. Lydtin and L. Rehder, Auslegeschrift, 2444100 Sept./US Pat. 852. 068 (1974).Google Scholar
  18. 18.
    D. Küppers, J. Koenings and H. Wilson, J.Electrochem.Soc. 125: 1298 (1978).CrossRefGoogle Scholar
  19. 19.
    D. Küppers, 7th Int.Conf.CVD, Proc.Electr.Chem.Soc. 159: (1979)Google Scholar
  20. 20.
    J.G. Peelen and J.W. Versluis, Acta Electr. 22: 255 (1979).Google Scholar
  21. 21.
    H. Schneider, H. Harms, A. Papp and H. Aulich, App.Opt. 17: 3035 (1978).ADSCrossRefGoogle Scholar
  22. 22.
    A. Papp and H. Harms, Appl.Opt. 19: 3729, 3735, 3741 (1980).Google Scholar
  23. 23.
    S.R. Norman, D.N. Payne, M.J. Adams and A.M. Smith, Electr.Lett. 15: 309 (1979).ADSCrossRefGoogle Scholar
  24. 24.
    G.W. Tasker, W.G. French, J.R. Simpson, P. Kaiser and H.M. Presby, Appl.Opt. 17: 1836 (1978).ADSCrossRefGoogle Scholar
  25. 25.
    V. Ramaswany and W.G. French, Electr.Lett. 14: 143 (1978).CrossRefGoogle Scholar
  26. 26.
    V. Ramaswany, W.G. French and R.D. Stanley, Appl.Opt. 17: 3014 (1978).ADSCrossRefGoogle Scholar
  27. 27.
    E.A. Marcatili, BSTJ. 48: 2071 (1969).Google Scholar
  28. 28.
    I.P. Kaminow and V. Ramaswany, App.Phys.Lett. 34: 268 (1979).ADSCrossRefGoogle Scholar
  29. 29.
    V. Ramaswany, I.P. Kaminow, P. Kaiser and W.G. French, Appl. Phys.Lett. 33: 814 (1978).ADSCrossRefGoogle Scholar
  30. 30.
    R.H. Stolen, V. Ramaswany, P. Kaiser and W. Pleibel, Appl.Phys. Lett. 33: 699 (1978).ADSCrossRefGoogle Scholar
  31. 31.
    I.P. Kaminow, J.R. Simpson, H.M. Presby and J.B. MacChesney, Electr.Lett. 15: 677 (1979).CrossRefGoogle Scholar
  32. 32.
    V. Ramaswany, R.H. Stolen, M.D. Divino and W. Pleibel, Appl. Opt. 18: 4080 (1979).ADSCrossRefGoogle Scholar
  33. 33.
    K. Kitayama, S. Seikai, N. Uchida and M. Akiyama, Electr.Lett. 17: 420 (1981).ADSCrossRefGoogle Scholar
  34. 34.
    L. Jeunhomme and M. Monerie, Electr.Lett. 16: 921 (1980).ADSCrossRefGoogle Scholar
  35. 35.
    M. Monerie and L. Jeunhomme, Opt.Quant.Electr. 12: (1980).Google Scholar
  36. 36.
    A.J. Barlow and D.N. Payne, Electr.Lett. 17: 389 (1981).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • P. J. Severin
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations