Significance of Scatter Radar Studies of E and F Region Irregularities at High Latitudes

  • R. A. Greenwald
Part of the Nobel Foundation Symposia Published by Plenum book series (NOFS, volume 54)

Abstract

In this review, we consider the mechanisms by which electron density irregularities may be generated in the high latitude ionosphere and the techniques through which they are observed with ground base radars. We also compare the capabilities of radars used for studying these irregularities with the capabilities of radars used for incoherent scatter measurements, and we consider the relative advantages and disadvantages of each technique when it is applied to measurements in the high latitude ionosphere. Examples are given of how irregularity scatter techniques are particularly useful for dynamic studies of larger scale structured phenomena. Finally, it is concluded that in Scandinavia where the EISCAT, STARE, and SAFARI facilities will coexist, the various techniques will enhance each other and provide a better understanding of the various processes being studied.

Keywords

Anisotropy Convection Radar Barium Autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baggaley, W. J., Backscatter observations of F-region field- aligned irregularities during the IQSY, Journal of Geophysical Research, 75, 152, 1970.CrossRefADSGoogle Scholar
  2. Balsley, B. B. and W. L. Ecklund, VHF power spectra of the radar aurora, Journal of Geophysical Research, 77, 4746, 1972.CrossRefADSGoogle Scholar
  3. Basu, S., R. L. Vesprini and J. Aarons, F-Layer irregularities as determined by backscatter studies at 19 MHz over half of a solar cycle, Radio Sci., 355, 1974.Google Scholar
  4. Bates, H. F., and P. R. Albee, Aspect sensitivity of F-layer HF backscatter echoes, Journal of Geophysical Research, 75, 165, 1970.CrossRefADSGoogle Scholar
  5. Baumjohann, W., R. J. Pellinen, H. J. Opgenoorth and E. Nielsen, Joint two-dimensional observations of ground magnetic and ionospheric electric fields associated with auroral zone currents, 4. Current systems associated with local auroral breakups, Submitted to Planet, Space Sci., 1982.Google Scholar
  6. Buneman, O., Excitation of field-aligned sound waves by electron streams, Journal of Geophysical Research, 10, 285, 1963.Google Scholar
  7. Cahill, L. J., R. A. Greenwald, and E. Nielsen, Auroral radar and rocket double-probe observations of the electric field across the Harang discontinuity, Geophys. Res. Letts., 5, 687, 1978.CrossRefADSGoogle Scholar
  8. Chaturvedi, P. K., and S. L. Ossakow, Nonlinear stabilization of the current convective instability in the diffuse aurora, Geophys. Res. Letts., 6, 957, 1979.CrossRefADSGoogle Scholar
  9. Dyson, P. L., Direct measurement of the size and amplitude of irregularities in the topside ionosphere, Journal of Geophysical Research, 74, 6291, 1969.CrossRefADSGoogle Scholar
  10. Ecklund, W. L., B. B. Balsley and D. A. Carter, A preliminary comparison of F-region plasma drifts and E-region irregularity drifts in the auroral zone, Journal of Geophysical Research, 82, 195, 1977.CrossRefADSGoogle Scholar
  11. Farley, D. T., A plasma instability resulting in field-aligned irregularities in the ionosphere, Journal of Geophysical Research, 68, 6083, 1963.CrossRefMATHADSGoogle Scholar
  12. Fejer, B. G. and M. C. Kelley, Ionospheric irregularities, Reviews of Geophys. and Space Phys., 18, 401, 1980.CrossRefADSGoogle Scholar
  13. Greenwald, R. A., Studies of currents and electric fields in the auroral zone ionosphere using radar auroral backscatter, in Dynamics of the Magnetosphere, ed. S.-I. Akasofu, D. Reidel, Dordrecht, Holland, 1980.Google Scholar
  14. Greenwald, R. A. and A. D. M. Walker, Energetic of long period resonant hydromagnetic waves, Geophys. Res. Letts., 7, 745, 1980.Google Scholar
  15. Greenwald, R. A., W. Weiss, E. Nielsen and N. R. Thomson, STARE: A new radar auroral backscatter experiment in northern Scandinavia, Radio Sci., 13, 1021, 1978.CrossRefADSGoogle Scholar
  16. Hanuise, C., J. P. Villain and M. Crochet, Spectral studies of F-region irregularities in the auroral zone, Geophys. Res. Letts., 8, 1083, 1981.CrossRefADSGoogle Scholar
  17. Hice, J. D., and B. Frank, Occurrence patterns of topside spread-F on Alouette ionograms, Journal of Geophysical Research, 21, 3653, 1966.ADSGoogle Scholar
  18. Inhester, B., W. Baumjohann, R. A. Greenwald, E. Nielsen, Joint two-dimensional observations of ground magnetic and ionospheric electric fields associated with auroral zone currents. 3. Auroral zone currents during the passage of a westward travelling surge, Journal of Geophysical Research, in press, 1981.Google Scholar
  19. Kelley, M. C., K. D. Baker, J. C. Ulwick, C. L. Rino and M. J. Baron, Simultaneous rocket probe, scintillation and incoherent scatter radar observations of irregularities in the auroral zone ionosphere, Radio Sci., 15, 491, 1980.CrossRefADSGoogle Scholar
  20. Keskinen, M. J., S. L. Ossakow and B. E. McDonald, Nonlinear evolution of diffuse auroral F-region ionospheric irregularities, Geophys. Res. Letts., 7, 573, 1980.CrossRefADSGoogle Scholar
  21. Knox, F. B., A contribution to the theory of the production of field-aligned ionization irregularities in the equatorial electrojet, J. Atmos. Ten. Phys., 26, 239, 1964.CrossRefADSGoogle Scholar
  22. Lee, K., C. F. Kennel and F. V. Coroniti, On the marginally stable saturation spectrum of unstable type 1 equatorial electrojet irregularities, Journal of Geophysical Research, 79, 249, 1974.CrossRefADSGoogle Scholar
  23. Maeda, K., T. Tsuda, and H. Maeda, Theoretical interpretation of the equatorial sporadic E layers, Rpt. Ionosph. Space Res. Japan, 17, 147, 1963.Google Scholar
  24. McClure, J. P., and W. B. Hanson, A catalog of ionospheric F-region irregularity behavior based on Ogo 6 retarding potential analyzer data, Journal of Geophysical Research, 78, 7431, 1973.CrossRefADSGoogle Scholar
  25. McDonald, B. E., T. P. Coffey, S. Ossakow, and R. N. Sudan, Preliminary report of numerical simulation of type 2 irregularities in the equatorial electrojet, Journal of Geophysical Research, 79, 2551, 1974.CrossRefADSGoogle Scholar
  26. Newman, A. L. and E. Ott, Nonlinear simulations of type 1 irregularities in the equatorial electrojet, Journal of Geophysical Research, 86, 6879, 1981.CrossRefADSGoogle Scholar
  27. Oksman, J., H. J. Moller and R. A. Greenwald, Comparisons between strong HF backscatter and VHF radar aurora, Radio Sci., 14, 1121, 1979.CrossRefADSGoogle Scholar
  28. Ossakow, S. L., K. Papadopoulos, J. Owens and T. Coffey, Parallel propagation effects on the type 1 electrojet instability, Journal of Geophysical Research, 80, 141, 1975.CrossRefADSGoogle Scholar
  29. Ossakow, S. L. and P. K. Chaturvedi, Current convective instability in the diffuse aurora, Geophys. Res. Letts., 6, 332, 1979.CrossRefADSGoogle Scholar
  30. Phelps, A. D. R. and R. C. Sagalyn, Plasma density irregularities in the high latitude topside ionosphere, Journal of Geophysical Research, 81, 515, 1976.CrossRefADSGoogle Scholar
  31. Prakash, S., S. P. Gupta, and B. H. Subbaraya, Nightime equatorial E-region irregularities, Planet. Space Scil, 18, 1307, 1970.CrossRefADSGoogle Scholar
  32. Reid, G. G., The formation of small scale irregularities in the ionosphere, Journal of Geophysical Research, 73, 1627, 1968.CrossRefADSGoogle Scholar
  33. Rogister, A., and N. D’Angelo, Type 2 irregularities in the equatorial electrojet, Journal of Geophysical Research, 75, 3879, 1970.CrossRefADSGoogle Scholar
  34. Rostoker, G. and T. J. Hughes, A comprehensive model current system for high latitude magnetic activity - II The substorm component, Geophys. J. R. Astro. Sec., 58, 571, 1979.ADSGoogle Scholar
  35. Sagalyn, R. C., M. Smiddy, and M. Ahmed, High latitude irregularities in the topside ionosphere based on 1S1S-1 thermal ion probe data, Journal of Geophysical Research, 4252, 1974.Google Scholar
  36. Sato, T., Stabilization of the two-stream instability in the ionosphere, Phys. Rev. Letts., 28, 732, 1972.CrossRefADSGoogle Scholar
  37. Schlegel, K. and E. Nielsen, Deviation of drifts and electric fields from the STARE auroral radar measurements using the kinetic theory of the two stream instability, Unpublished manuscript, 1982.Google Scholar
  38. Schlegel, K. and J. P. St. Maurice, Note on the propagation of the unstable plasma waves of the Farley-Buneman instability, Journal of Geophysical Research, (In press), 1982.Google Scholar
  39. Schmidt, M. J. and S. P. Gary, Density gradients and the Farley- Buneman instability, Journal of Geophysical Research, 78, 8261, 1973.CrossRefADSGoogle Scholar
  40. Sudan, R. N., J. Akinrimisi and D. T. Farley, Generation of small-scale irregularities in the equatorial electrojet, Journal of Geophysical Research, 78, 240, 1973.CrossRefADSGoogle Scholar
  41. Timofeev, E. and Y. Miroshnikov, Altitude characteristics of radar aurora as seen by a 90 MHz double-altitude radar system operated at Kamaselga, Karelia, Journal of Geophysical Research, (In press), 1982.Google Scholar
  42. Tsunoda, R. T., Doppler velocity maps of diffuse radar aurora, Journal of Geophysical Research, 81, 425, 1976.CrossRefADSGoogle Scholar
  43. Tsunoda, R. T., R. I. Presnell, and R. L. Leadabrand, Radar auroral characteristics as seen by the 398 MHz phased- array radar operated at Homer, Alaska, Journal of Geophysical Research, 79, 4709, 1974.CrossRefADSGoogle Scholar
  44. Unwin, R. S., The morphology of the radio aurora at sunspot maximum II, The behavior of different echo types, J. Atmos. Terr. Phys., 28, 1183, 1966.Google Scholar
  45. Unwin, R. S. and P. V. Johnston, Height dependence in the power spectrum of diffuse aurora, Journal of Geophysical Research, 86, 5733, 1981.CrossRefADSGoogle Scholar
  46. Vickrey, J. F., C. L. Rino and T. A. Potemra, Chatanika/Triad observations of unstable ionozation enhancements in the auroral F-region, Geophys. Res. Letts., 789, 1980.Google Scholar
  47. Walker, A. D. M., R. A. Greenwald, W. F. Stuart and C. A. Green, Resonance region of a Pc5 micropulsation examined by a dual auroral radar system, Nature, 273, 646, 1978.CrossRefADSGoogle Scholar
  48. Walker, A. D. M., R. A. Greenwald, W. F. Stuart, and C. A. Green, STARE auroral radar observations of Pc5 geomagnetic pulsations, Journal of Geophysical Research, 84, 3373, 1979.CrossRefADSGoogle Scholar
  49. Wang, T. N. C. and R. T. Tsunoda, On a crossed field two-stream plasma instability in the auroral plasma, Journal of Geophysical Research, 80, 2172, 1975.CrossRefADSGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. A. Greenwald
    • 1
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA

Personalised recommendations