Skip to main content

Irregularities and Instabilities in the Auroral F Region

  • Chapter
High-Latitude Space Plasma Physics

Part of the book series: Nobel Foundation Symposia Published by Plenum ((NOFS,volume 54))

Abstract

The Earth’s F-region ionospheric plasma displays structure perpendicular to the magnetic field on scales from hundreds of kilometers down to centimeters. The physical processes that operate over such a wide range of scale sizes are, of course, very diverse. At the largest scales (λ ≥ 10 km), production, loss, and transport of structured plasma are dominated by aeronomic processes including energy sources of magnetospheric origin. At intermediate (0.1 km < < < 10 km) and small (λ < 100 m) scales, plasma instabilities and cross-field plasma diffusion are often the dominant physical processes controlling the plasma structure. However, because nonlinear plasma processes can couple structures in one scale length regime to other spatial frequencies, the entire spectrum of irregularities must be studied as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chaturvedi, P. K., and Ossakow, S. L., February 1979, Nonlinear stabilization of the E X B gradient drift instability in ionospheric plasma clouds, J. Geophys. Res., 84: A2: 419.

    Google Scholar 

  • Chaturvedi, P. K., and Ossakow, S. L., December 1979, Nonlinear stabilization of the current convective instability in the diffuse aurora, J. Geophys. Res. Letts., 6: 12: 957.

    Article  ADS  Google Scholar 

  • Dyson, P. L., and Winningham, J. D., 1974, Topside ionospheric spread F and particle precipitation in the dayside magnetospheric clefts, J. Geophys. Res., 79: 5219.

    Article  ADS  Google Scholar 

  • Fejer, B. G., and Kelley, M. C., May 1980, Ionospheric irregularities, Rev. Geophys. and Space Sci., 18: 2: 401.

    Article  ADS  Google Scholar 

  • Foster, J. C. and Burrows, J. R., December 1976, Electron fluxes over the polar cap: 1. Intense KeV fluxes during post- storm quieting, J. Geophys. Res., 81: 34: 6016.

    Article  ADS  Google Scholar 

  • Gary, S. P., June 1980, Wave particle transport from electrostatic instabilities, Phys. Fluids, 23: 6: 1193.

    Article  MATH  ADS  Google Scholar 

  • Heelis, R. A., Murphy, J. A., and Hanson, W. B., January 1981, A feature of the behavior of He+in the nightside high-latitude ionosphere during equinox, J. Geophys. Res., 86: A1: 59.

    Google Scholar 

  • Heppner, J. P., March 1977, Empirical models of high-latitude electric fields, J. Geophys. Res., 82: 7: 1115.

    Article  ADS  Google Scholar 

  • Kelley, M. C., and Carlson, C. W., 1977, Observation of intense velocity shear and associated electrostatic waves near an auroral arc, J. Geophys. Res., 82: 2343.

    Article  ADS  Google Scholar 

  • Kelley, M. C., and Mozer, F. S., August 1972, A satellite survey of vector electric fields in the ionosphere at frequencies of 10–500 Hz: 1. Isotropic, high-latitude electrostatic emissions, J. Geophys. Res., 77: 22: 4158.

    Article  ADS  Google Scholar 

  • Kelley, M. C., Bering, C. E., and Mozer, F. S., 1975, Evidence that the ion cyclotron instability is saturated by ion heating, Phys. Fluids, 18: 1590.

    Article  ADS  Google Scholar 

  • Kelley, M. C., Vickrey, J. F., Carlson, C. W., and Torbert, R., 1982, On the origin and spatial extent of high-latitude F-region irregularities., J. Geophys. Res., in press.

    Google Scholar 

  • Kelley, M. C., Pfaff, C. R., Baker, K. D., Ulwick, J. C., Livingston, R. C., Rino, C. L., and Tsunoda, R. T., 1982, Simultaneous rocket probe and radar measurements of equatorial spread F-transitional and short wavelength results, submitted to J. Geophys. Res.

    Google Scholar 

  • Kelly, J. D., and Wickwar, V. B., September 1981, Radar measurements of high-latitude ion composition between 140 and 300-km altitude, J. Geophys. Res., 86: A9: 7617.

    Google Scholar 

  • Keskinen, M. J., and Ossakow, S. L., January 1982, Nonlinear evolution of plasma enhancements in the auroral ionosphere: 1. Long wavelength irregularities, J. Geophys. Res., 87: 144.

    Article  ADS  Google Scholar 

  • Kintner, P. M., 1976, Observations of velocity shear driven plasma turbulence, J. Geophys. Res., 81: 5114.

    Article  ADS  Google Scholar 

  • Linson, L. M. and Workman, J. B., June 1970, Formation of striations in ionospheric plasma clouds, J. Geophys. Res., 75: 16: 3211.

    Article  ADS  Google Scholar 

  • Mozer, F. S, Cattell, C. A., Tererin, M., Torbert, R. B., Vonglinski, S., Woldorf, M., and Wygant, J., 1979, The dc and ac electric field, plasma density, plasma temperature, and field-aligned current experiments on the S3-3 satellite, J. Geophys. Res., 84: A10: 5875.

    Google Scholar 

  • Ossakow, S. L., and Chaturvedi, P. K., April 1979, Current convective instability in the diffuse aurora, Geophys. Res. Letts., 6: 4: 322.

    Article  ADS  Google Scholar 

  • Rino, C. L., Livingston, R. C., and Matthews, S. J., December 1978, Evidence for sheet-like auroral ionospheric irregularities, Geophys. Res. Letts., 5: 12: 1034.

    Article  ADS  Google Scholar 

  • Sagalyn, R. S., Smiddy, M., and Ahmed, M., October 1974, High-latitude irregularities in the topside ionosphere based on ISIS 1 thermal probe, J. Geophys. Res., 79: 28: 4253.

    Article  Google Scholar 

  • Spiro, R. W., Heelis, R. A., and Hanson, W. B., September 1978, Ion convection and the formation of the mid-latitude F-region ionozation trough, J. Geophys. Res., 83: A9: 4255.

    Google Scholar 

  • Vickrey, J. F., and Kelley, M. C., 1982, The effects of a conducting E layer on classical F-region cross-field plasma diffusion, submitted to J. Geophys. Res.

    Google Scholar 

  • Vickrey, J. F., Rino, C. L., and Poterma, T. A., October 1980, Chatanika/Triad observations of unstable ionization enhancements in the auroral F region, Geophys. Res. Letts., 7: 10: 789.

    Article  ADS  Google Scholar 

  • Wallis, D. D., and Budzinski, E. E., January 1981, Empirical models of height-integrated conductivities, J. Geophys. Res., 86: A1: 125.

    Google Scholar 

  • Weber, E. J., and Buchau, J., January 1980, Polar cap F-layer auroras, Geophys. Res. Letts., 8: 1: 125.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Vickrey, J.F., Kelley, M.C. (1983). Irregularities and Instabilities in the Auroral F Region. In: Hultqvist, B., Hagfors, T. (eds) High-Latitude Space Plasma Physics. Nobel Foundation Symposia Published by Plenum, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3652-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3652-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3654-9

  • Online ISBN: 978-1-4613-3652-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics