Skip to main content

The Role of the Auroral Ionosphere in Magnetospheric Substorms

  • Chapter
High-Latitude Space Plasma Physics

Part of the book series: Nobel Foundation Symposia Published by Plenum ((NOFS,volume 54))

Abstract

The energy that is released during a magnetospheric substorm has large and obvious effects on the Earth’s auroral ionosphere. In fact, ionospheric effects such as the strengthening of electrojets and the motion and intensification of auroral forms were central elements in the development of the concept of the substorm (see, e.g., Akasofu, 1968). The purpose of this paper is not to discuss the obvious ionospheric manifestations of a substorm. Instead, we address the more subtle converse question of the effect of the ionosphere on substorm phenomena that occur near the magnetospheric equatorial plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.-I., 1968, “Polar and Magnetospheric Substorms,” D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Atkinson, G., 1967, On tail current ions, J. Geophys. Res., 72: 5373.

    Article  ADS  Google Scholar 

  • Atkinson, G., 1979, The expansive phase of the magnetospheric substorms, in: “Dynamics of the Magnetosphere,” S.-I. Akasofu, ed., D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Balsiger, H., Eberhardt, P., Geiss, J., and Young, D. T., 1980, Magnetic storm injection of 0.9 to 16 keV solar and terrestrial ions into the high-altitude magnetosphere, J. Geophys. Res., 85: 1645.

    Article  ADS  Google Scholar 

  • Beard, D. B., 1979, The magnetotail magnetic field, J. Geophys. Res., 84: 2118.

    Article  ADS  Google Scholar 

  • Birn, J., and Hones, E. W., 1981, Three-dimensional modeling of dynamic reconnection in the geomagnetic tail, J, Geophys. Res., 86: 6802.

    Article  ADS  Google Scholar 

  • Block, L. P., 1966, On the distribution of electric fields in the magnetosphere, J. Geophys. Res., 71: 855.

    ADS  Google Scholar 

  • Boström, R., 1975, Mechanisms for driving Birkeland currents, in: “Physics of Hot Plasma in the Magnetosphere,” B. Hultqvist and B. Stenflo, ed., Plenum Publ. Co., New York.

    Google Scholar 

  • Brecht, S. H., Lyon, J. G., Fedder, J. A., and Hain, K., 1981, A time-dependent three-dimensional simulation of the earth1s magnetosphere, NRL Memorandum Report 4690.

    Google Scholar 

  • Cowley, S. W. H., 1980, Plasma populations in a simple open magnetosphere, Space Sci. Rev., 26: 217.

    Article  ADS  Google Scholar 

  • Cowley, S. W. H., and Southwood, D. J., 1980, Some properties of a steady-state geomagnetic tail, Geophys. Res. Lett., 7: 833.

    Article  ADS  Google Scholar 

  • DeForest, S. E., and Mcllwain, C. E., 1971, Plasma clouds in the magnetosphere, J. Geophys. Res., 76: 3587.

    Article  ADS  Google Scholar 

  • Erickson, G. M., and Wolf, R. A., 1980, Is steady convection possible in the earth’s magnetotail? Geophys. Res. Lett., 7: 897.

    Article  ADS  Google Scholar 

  • Fejer, J. A., 1964, Theory of geomagnetic daily disturbance variations, J. Geophys. Res., 69: 123.

    Article  ADS  Google Scholar 

  • Freeman, J. W., Hills, H. K., Hill, T. W., Reiff, P. H., and Hardy, D. A., 1977, Heavy ion circulation in the Earth’s magnetosphere, Geophys. Res. Lett., 4: 195.

    Article  ADS  Google Scholar 

  • Fuchs, K., and Voigt, G.-H., 1979, Self-consistent theory of a magnetospheric B-field model, in: “Quantitative Modeling of Magnetospheric Processes,” W. P. Olson, ed., AGU, Washington, D.C.

    Google Scholar 

  • Harel, M., Wolf, R. A., Reiff, P. H., Spiro, R. W., Burke, W. J., Rich, F. J., and Smiddy, M., 1981a, Quantiative simulation of a magnetospheric substorm, 1. Model logic and overview, J. Geophys. Res., 86: 2217.

    Article  ADS  Google Scholar 

  • Harel, M., Wolf, R. A., Spiro, R. W., Reiff, P. H., Chen, C.-K., Burke, W. J., Rich, F. J., and Smiddy, M., 1981b, Quantitative simulation of a magnetospheric substorm, 2. Comparison with observations, J. Geophys. Res., 86: 2242.

    Article  ADS  Google Scholar 

  • Hill, T. W., and Reiff, P. H., 1980a, On the cause of plasma sheet thinning during magnetospheric substorms, Geophys. Res. Lett., 7: 177.

    Article  ADS  Google Scholar 

  • Hill, T. W., and Reiff, P. H., 1980b, Plasma sheet dynamics and magnetospheric substorms, Planet. Space Sci., 28: 363.

    Article  ADS  Google Scholar 

  • Hones, E. W., Jr., 1979, Plasma flow in the magnetotail and its implications for substorm theories, in: “Dynamics of the Magnetosphere,”, S.-I. Akasofu, ed., D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Hultqvist, B., 1981, Recent progress in the understanding of the ion composition in the magnetosphere and some major question marks, Kiruna Geophys. Inst. Rep. ISSN 0349–256.

    Google Scholar 

  • Kan, J. R., and Lee, L. C., 1980, Theory of imperfect magnetosphere-ionosphere coupling, J. Geophys. Res., 7: 633.

    Google Scholar 

  • Karlson, E. T., 1963, Streaming of plasma through a dipole field, Phys. Fluids, 6: 798.

    Article  MathSciNet  Google Scholar 

  • Kennel, C. F., 1969, Consequences of a magnetospheric plasma, Rev. Geophys. Space Phys., 7: 379.

    Article  ADS  Google Scholar 

  • Leboeuf, J. N., Tajima, T., Kennel, C. F., and Dawson, J. M., 1978, Global simulation of the time-dependent magnetosphere, Geophys. Res. Lett., 5: 609.

    Article  ADS  Google Scholar 

  • Lennartsson, W., Sharp, R. D., Shelley, E. G., Johnson, R. G., and Balsiger, H., 1981, Ion composition and energy distribution during 10 magnetic storms, J. Geophys. Res., 86: 4628.

    Article  ADS  Google Scholar 

  • Lyon, J., Brecht, S. H., Fedder, J. A., and Palmadesso, P., 1980, The effects on the earth’s magnetotail from shocks in the solar wind, Geophys. Res. Lett., 7: 721.

    Article  ADS  Google Scholar 

  • Mcllwain, C. E., 1976, Bouncing clusters of ions at seven earth radii (abstract), E⊕S Trans. AGU, 57: 307.

    Google Scholar 

  • Nishida, A., and Nagayama, N., 1973, Synoptic survey for the neutral line in the magnetotail during the substorn expansion phase, J. Geophys. Res., 78: 3782.

    Article  ADS  Google Scholar 

  • Olson, W. P., and Pfitzer, K., 1974, A quantitative model of the magnetospheric magnetic field, J. Geophys. Res., 79: 3739.

    Article  ADS  Google Scholar 

  • Pilipp, W. G., and Morfill, G., 1978, The formation of the plasma sheet resulting from plasma mantle dynamics, J. Geophys. Res., 83: 5670.

    Article  ADS  Google Scholar 

  • Rostoker, G., and Bostrbm, R., 1976, A mechanism for driving the gross Birkeland current configuration in the auroral oval, J. Geophys. Res., 81: 235.

    Article  ADS  Google Scholar 

  • Schield, M. A., Freeman, J. W., and Dessler, A. J., 1969, A source for field-aligned currents at auroral latitudes, J. Geophys. Res., 74: 247.

    Article  ADS  Google Scholar 

  • Schindler, K., 1979, Macroinstabilities of the magnetotail, in: “Dynamics of the Magnetosphere,” S.-I. Akasofu, ed., D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Schindler, K., and Birn, J., 1982, Self-consistent theory of time-dependent convection in the Earth’s magnetotail, submitted to J. Geophys. Res.

    Google Scholar 

  • Sharp, R. D., Lennartson, O. W., Peterson, W. K., and Shelley, E. G., 1982, the origins of plasma in the distant plasma sheet (extended abstract), in: “Origins of Plasmas and Electric Fields in the Magnetosphere,” J. J. Sojka, ed., Utah State University, Logan, Utah.

    Google Scholar 

  • Shelley, E. G., Sharp, R. D., and Johnson, R. G., 1976, Satellite observations of an ionospheric acceleration mechanism, Geophys. Res. Lett., 3: 654.

    Article  ADS  Google Scholar 

  • Siscoe, G. L., 1982, Energy coupling between regions 1 and 2 Birkeland current systems, J. Geophys. Res., submitted.

    Google Scholar 

  • Siscoe, G. L., Ness, N. F., and Whang, Y. C., 1975, Substorms on Mercury?, J. Geophys. Res., 80: 4359.

    Article  ADS  Google Scholar 

  • Swift, D. W., 1971, Possible mechanisms for formation of the ring current belt, J. Geophys. Res., 76: 2276.

    Article  ADS  Google Scholar 

  • Swift, D. W., 1979, Substorms and magnetospheric energy transfer processes, in: “Dynamics of the Magnetosphere,” S.-I. Akasofu, ed., D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Taylor, H. E., and Perkins, F. W., 1971, Auroral phenomena driven by the magnetospheric plasma, J. Geophys. Res., 76: 272.

    Article  ADS  Google Scholar 

  • Vasyliunas, V. M., 1970, Mathematical models of magnetospheric convection and its coupling to the ionosphere, in: “Particles and Fields in the Magnetosphere,” B. McCormac, ed., D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Vasyliunas, V. M., 1972, The interrelationship of magnetospheric processes, in: “Earth’s Magnetospheric Processes,” B. McCormac, ed., D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Voigt, G.-H., 1981, A mathematical magnetospheric field model with independent physical parameters, Planet. Space Sci., 29: 1.

    Article  ADS  Google Scholar 

  • Wolf, R. A., 1974, Calculations of magnetospheric electric fields, in: “Magnetospheric Physics,” B. McCormac, ed., D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Wolf, R. A., and Harel, M., 1979, Dynamics of the magnetospheric plasma, in: “Dynamics of the Magnetosphere,” S.-I. Akasofu, ed., D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Wolf, R. A., Harel, M., Spiro, R. W., Voigt, G.-H., Reiff, P. H., and Chen, C.-K., 1982, Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1979, J. Geophys. Res., in press.

    Google Scholar 

  • Wu, C. C., Walker, R. J., and Dawson, J. M., 1981, A three-dimensional MHD model of the earth’s magnetosphere, Geophys. Res. Lett., 8: 523.

    Article  ADS  Google Scholar 

  • Young, D. T., 1979, Ion composition in magnetospheric modeling, in: “Quantitative Modeling of Magnetospheric Processes,” W. P. Olson, ed., AGU, Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Wolf, R.A., Spiro, R.W. (1983). The Role of the Auroral Ionosphere in Magnetospheric Substorms. In: Hultqvist, B., Hagfors, T. (eds) High-Latitude Space Plasma Physics. Nobel Foundation Symposia Published by Plenum, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3652-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3652-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3654-9

  • Online ISBN: 978-1-4613-3652-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics