Extremes: Limit Results for Univariate and Multivariate Nonstationary Sequences

  • Jürg Hüsler


We review the limiting behaviour of extremes and exceedances of univariate and multivariate nonstationary random sequences. The approach we present is based on an extension of the methods in the stationary case. It is extended also for any visits of the random sequence to some rare set, instead of the usual set (u n , ∞). We discuss some special cases as normal, periodic and independent sequences and review also the dependence structure of the components of the multivariate maxima.


Point Process Random Sequence Stationary Case Limit Distribution Normal Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpuim, M.T., Catkan, N. and Hüsler, J. (1992) Nonstationary max-autoregressive random sequences. Techn. Report. To be published.Google Scholar
  2. Balkema, A. and Resnick, S. (1977) Max-infinite divisibility. J. Appl. Probab. 14, 309–319.CrossRefMATHMathSciNetGoogle Scholar
  3. Ballerini, R. and McCormick, W.P. (1989) Extreme value theory for processes with periodic variances. Comm. in Statist., Stoch. Models 5, 45–61.Google Scholar
  4. Coles, S.G. and Tawn, J. (1994) Statistical methods for multivariate extremes: an application to structural design. Appl. Statist. 43.Google Scholar
  5. Daley, D.J. and Hall, P. (1984) Limit laws for the maximum of weighted and shifted iid. random variables. Ann. Probab. 12, 571–587.CrossRefMATHMathSciNetGoogle Scholar
  6. Davison A.C. and Smith, R.L. (1990) Models for exceedances over high thresholds. J. R. Statist. Soc. B, 52, 393–442.MATHMathSciNetGoogle Scholar
  7. Falk, M., Hüsler, J. and Reiss, R.D. (1994) Extreme Values and Rare Events, DMV-Seminar 1991, Birkhauser, Basel and Boston.Google Scholar
  8. Galambos, J. (1987) The Asymptotic Theory of Extreme Order Statistics. (2nd. ed.) Krieger, Florida.MATHGoogle Scholar
  9. Hüsler, J. (1979) The limiting behaviour of the last exit time for sequences of independent, identically distributed random variables. Z. Wahrscheinlichkeitstheorie verw. Geb. 50, 159–164.CrossRefMATHGoogle Scholar
  10. Hüsler, J. (1983) Asymptotic approximations of crossing probabilities of random sequences. Z. Wahrscheinlichkeitstheorie verw. Geb. 63, 257–270.CrossRefMATHGoogle Scholar
  11. Hüsler, J. (1986a) Extreme values of noil-stationary random sequences. J. Appl. Probab. 23, 937–950.CrossRefMATHMathSciNetGoogle Scholar
  12. Hüsler, J. (1986b) Extreme values and rare events of non-stationary random sequences. In Dependence in Probability and Statistics, edited by Eberlein, E. and Taqqu, M.S., Birkhauser, Boston.Google Scholar
  13. Hüsler, J. (1989a) Limit properties for multivariate extremes in sequences of independent, non-identically distributed random vectors. Stoch. Proc. Appl. 31 (1989) 105–116.CrossRefMATHGoogle Scholar
  14. Hüsler, J. (1989b) Limit distributions of multivariate extreme values in non- stationary sequences of random vectors. In Extreme Value Theory, Lecture Notes in Statistics 51, J. Hüsler and R.-D. Reiss, Eds., Springer, Berlin, 234–245.CrossRefGoogle Scholar
  15. Hüsler, J. (1993) A note on exceedances and rare events of non-stationary sequences. J. Appl. Probab. 30 Dezember.Google Scholar
  16. Hüsler, J. and Schiipbach, M. (1988) Limit results for maxima in non- stationary multivariate Gaussian sequences. Stoch. Proc. Appl. 28, 91–99.CrossRefMATHGoogle Scholar
  17. Hüsler, J. and Reiss, R.D. (1989) Maxima of normal random vectors: between independence and total dependence. Statistics Probab. Letters 7, 283–286.Google Scholar
  18. Juncosa, M.L. (1949) The asymptotic behaviour of the minimum in a sequence of random variables. Duke Math. J. 16, 609–618.MATHMathSciNetGoogle Scholar
  19. Leadbetter, M.R. (1983) Extremes and local dependence in stationary sequences. Z. Wahrscheinlichkeitstheorie verw. Geb. 65, 291–306.CrossRefMATHMathSciNetGoogle Scholar
  20. Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1983) Extremes and Related Properties of Random Sequences and Processes. Springer Series in Statistics, Springer, New York.Google Scholar
  21. Leadbetter, M.R. and Nandagopalan, S. (1989) On exceedance point processes for stationary sequences under mild oscillation restrictions. In Extreme Value Theory, Lecture Notes in Statistics 51, J. Hüsler and R.-D. Reiss, Eds., Springer, Berlin, p. 69–80.Google Scholar
  22. Leadbetter, M.R. and Rootzen, H. (1988) Extremal theory for stochastic processes. Ann. Probab. 16, 431–478.CrossRefMATHMathSciNetGoogle Scholar
  23. Meijzler, D.G. (1950) On the limit distribution of the maximal term of a variational series. Dopovidi Akad. Nauk Ukrain. SSR 1, 3–10.Google Scholar
  24. Nandagopalan, S. (1992) On the multivariate extremal index. Techn. Report.Google Scholar
  25. Nandagopalan, S., Leadbetter, M.R. and Hüsler, J. (1992) Limit theorems of multi-dimensional random measures. To be published.Google Scholar
  26. Pancheva E.I. (1985) Limit theorems for extreme order statistics under nonlinear normalization. In Stability Problems for Stochastic Models, Lecture Notes in Math. 1155, 248–309, Springer, Berlin.Google Scholar
  27. Resnick, S. (1987) Extreme Values, Regular Variation, and Point Processes, Springer, New York.MATHGoogle Scholar
  28. Rootzen, H. (1986) Extreme value theory for moving average processes. Ann. Probab. 14, 612–652.CrossRefMATHMathSciNetGoogle Scholar
  29. Serfozo, R. (1980) High level exceedances of regenerative and semi-stationary processes. J. Appl. Probab. 17, 432–431.CrossRefMathSciNetGoogle Scholar
  30. Serfozo, R. (1988) Extreme values of birth and death processes and queues. Stoch. Proc. Appl. 27, 291–306.CrossRefMATHMathSciNetGoogle Scholar
  31. Turkman, K.F. and Walker, A.M. (1983) Limit laws for the maxima of a class of quasi-stationary sequences. J. Appl. Probab. 20, 814–821.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Jürg Hüsler
    • 1
  1. 1.Dept. of Math. StatisticsUniversity of BernBernSwitzerland

Personalised recommendations