Skip to main content

Mathematical Equivalence of the Auction Algorithm for Assignment and the ∊-Relaxation (Preflow-Push) Method for Min Cost Flow

  • Chapter
Large Scale Optimization

Abstract

It is well known that the linear minimum cost flow network problem can be converted to an equivalent assignment problem. Here we give a simple proof that when the auction algorithm is applied to this equivalent problem, one obtains the generic form of the -relaxation method, and as a special case, the Goldberg-Tarjan preflow-push max-flow algorithm. The reverse equivalence is already known, that is, if we view the assignment problem as a special case of a minimum cost flow problem and we apply the -relaxation method with some special rules for choosing the node to iterate on, we obtain the auction algorithm. Thus, the two methods are mathematically equivalent.

Research supported by NSF under Grant No. CCR-9103804, and by the ARO under Grant DAAL03-92-G-0115.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1989), “Networks Flows,” Sloan W. P. No. 2059-88, M.I.T., Cambridge, MA, (also in (1989) Handbooks in Operations Research and Management Science 1: Optimization, G. L. Nemhauser, A. H. G. Rinnooy-Kan and M. J. Todd (eds.), North-Holland, Amsterdam, 211 — 369 ).

    Google Scholar 

  2. Ahuja, R. K., Orlin, J. B., and Tarjan, R. E. (1989), “Improved Time Bounds for the Maximum Flow Problem,” SIAM Journal of Computing 18, 939–954.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahuja, R. K., and Orlin, J. B. (1989), “A Fast and Simple Algorithm for the Maximum Flow Problem,” Operations Research 37, 748–759.

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, R. J., and Setubal, J. C. (1993), “Goldberg’s Algorithm for Maximum Flow in Perspective: A Computational Study,” in D. Johnson and K. McGeoch (eds.), DIMACS Implementation Challenge Workshop—Algorithms for Network Flow and Matching.

    Google Scholar 

  5. Bertsekas, D. P., and Eckstein, J. (1987), “Distributed Asynchronous Relaxation Methods for Linear Network Flow Problems,” Proc. of IFAC 87, Munich, Germany.

    Google Scholar 

  6. Bertsekas, D. P., and Eckstein, J. (1988), “Dual Coordinate Step Methods for Linear Network Flow Problems,” Math. Programming, Series B 42, 203–243.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsekas, D. P., and Tsitsiklis, J. N. (1989), Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  8. Bertsekas, D. P. (1979), A Distributed Algorithm for the Assignment Problem, Lab. for Information and Decision Systems Working Paper, M.I.T.

    Google Scholar 

  9. Bertsekas, D. P. (1986), “Distributed Asynchronous Relaxation Methods for Linear Network Flow Problems,” Lab. for Information and Decision Systems Report P-1606, M.I.T.

    Google Scholar 

  10. Bertsekas, D. P . (1986), Distributed Relaxation Methods for Linear Network Flow Problems, Proceedings of 25th IEEE Conference on Decision and Control, pp. 2101–2106.

    Google Scholar 

  11. Bertsekas, D. P. (1988), “The Auction Algorithm: A Distributed Relaxation Method for the Assignment Problem,” Annals of Operations Research 14, 105–123.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertsekas, D. P. (1991), Linear Network Optimization: Algorithms and Codes, M. I. T. Press, Cambridge, Mass.

    MATH  Google Scholar 

  13. Bertsekas, D. P. (1992), “Auction Algorithms for Network Problems: A Tutorial Introduction,” Computational Optimization and Applications 1, 7–66.

    MathSciNet  MATH  Google Scholar 

  14. Cheriyan, J., and Maheshwari, S. N. (1989), “Analysis of Preflow Push Algorithms for Maximum Network Flow,” SIAM J. Comput. 18, 1057–1086.

    Article  MathSciNet  MATH  Google Scholar 

  15. Derigs, U. and Meier, W. (1989), “Implementing Goldberg’s Max-Flow Algorithm—A Computational Investigation,” Zeitschrif für Operations Research 33, 383–403.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ford, L. R., Jr., and Fulkerson D. R. (1956), “Maximal Flow through a Network,” Can. Journal of Math. 8, 339–404.

    MathSciNet  Google Scholar 

  17. Goldberg, A. V. and Tarjan, R. E. (1986), A New Approach to the Maximum Flow Problem, Proc. 18th ACM STOC, pp. 136–146.

    Google Scholar 

  18. Goldberg, A. V. and Tarjan, R. E. (1990), “Solving Minimum Cost Flow Problems by Successive Approximation,” Math. of Operations Research 15, 430–466.

    Article  MathSciNet  MATH  Google Scholar 

  19. Goldberg, A. V. (1985), A New Max-Flow Algorithm, Tech. Mem. MIT/LCS/TM-291, Laboratory for Computer Science, M. I. T., Cambridge, MA.

    Google Scholar 

  20. Goldberg, A. V. (1987), Efficient Graph Algorithms for Sequential and Parallel Computers, Tech. Report TR-374, Laboratory for Computer Science, M. I. T., Cambridge, MA.

    Google Scholar 

  21. Mazzoni, G., Pallotino, S., and Scutella, M. G. (1991), “The Maximum Flow Problem: A Max-Preflow Approach,” European J. of Operational Research 53, 257–278.

    Article  MATH  Google Scholar 

  22. Nguyen, Q. C., and Venkateswaran, V. (1993), “Implementations of the Goldberg-Tarjan Maximum Flow Algorithm,” in D. Johnson and K. McGeoch (eds.), DIMACS Implementation Challenge Workshop—Algorithms for Network Flow and Matching.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bertsekas, D.P. (1994). Mathematical Equivalence of the Auction Algorithm for Assignment and the ∊-Relaxation (Preflow-Push) Method for Min Cost Flow. In: Hager, W.W., Hearn, D.W., Pardalos, P.M. (eds) Large Scale Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3632-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3632-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3634-1

  • Online ISBN: 978-1-4613-3632-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics