Advertisement

Microbial Assays in Research and in the Characterization of Complex Mixtures

  • Herbert S. Rosenkranz
  • Elena C. McCoy
  • Robert Mermelstein
Part of the Environmental Science Research book series (ESRH, volume 27)

Abstract

Because of the unusually high reliability of short-term microbial assays for predicting the potential carcinogenicity of environmental agents, the emphasis of recent reports has been on standardization of experimental procedures, interlaboratory reproducibility, and the generation of a data base for a wide variety of chemicals (de Serres and Shelby, 1979a,b; Mattern et al., 1978; Seiler et al., 1980). Indeed, studies in this laboratory have dealt with experimental factors which may affect the mutagenic and genotoxic responses of potential carcinogens (Rosenkranz et al., 1976a,b, 1979a,b, 1980; Rosenkranz and Leifer, 1980; Rosenkranz and Poirier, 1979). All too often, however, we tend to forget that short-term assays can be used as research tools in the development of new concepts related to the molecular basis of DNA-adduct formation, its repair, and alternate mechanisms responsible for cancer Induction. In addition, the data base itself, if developed properly, may be an excellent source of information for the development of theoretical models which could form the basis of a more rational approach to risk evaluation.

Keywords

Test Strain Quantitative Structure Activity Relationship Mutagenicity Assay Silver Sulfadiazine Somatic Mutation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amacher, D.E., S.C. Paillet, and G.N. Turner. 1979. Utility of the mouse lymphoma L51789/TK assay for the detection of chemical mutagens. In: Mammalian Cell Mutagenesis: The Maturation of Test Systems-Banbury Report No. 2. A.W. Hsie, J.P. O’Neill, and V.K. McElhony, eds. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY. pp. 277–289.Google Scholar
  2. Ames, B.N., J. McCann, and E. Yamasaki. 1975. Methods for detecting carcinogens and mutagens with the Salmonella/-mammalian-microsome mutagenicity test. Mutation Res. 31:347–364.Google Scholar
  3. Ames, B.N. 1979. Identifying environmental chemicals causing mutations and cancer. Science 204:587–593.ADSCrossRefGoogle Scholar
  4. Andreozzi, P., G. Klopman, and A.J. Hopfinger. 1980. Theoretical study of N-nitrosamines and their presumed proximate carcinogens. Cancer Biochem. Biophys. 4:209.Google Scholar
  5. Cairns, J. 1981. The origin of human cancers. Nature 289:353–357.ADSCrossRefGoogle Scholar
  6. Cheli, C, D. DeFrancesco, L.A. Petrullo, E.C. McCoy, and H.S. Rosenkranz. 1980. The Salmonella mutagenicity assay: reproducibility. Mutation Res. 74:145–150.Google Scholar
  7. Chu, K.C., K.M. Patel, A.H. Lin, R.E. Tarone, M.S. Linhart, and V.C. Dunkel. 1981. Evaluating statistical analyses and reproducibility of microbial mutagenicity assays. Mutation Res. 85:119–132.Google Scholar
  8. Cole, J., CF. Arlett, J. Lowe, and B.A. Bridges. 1982. The mutagenic potency of 1,8-dinitropyrene in cultured mouse lymphoma cells. Mutation Res. 93:213–220.CrossRefGoogle Scholar
  9. Coward, J.E., H.S. Carr, and H.S. Rosenkranz. 1973a. Silver sulfadiazine: effect on the ultrastructure of Pseudomonas aeruginosa. Antimicrob. Ag. Chemother. 3:621–624.Google Scholar
  10. Coward, J.E., H.S. Carr, and H.S. Rosenkranz. 1973b. Silver sulfadiazine: effect on the growth and ultrastructure of Staphylococci. Chemotherapy 19:348–353.CrossRefGoogle Scholar
  11. Coward, J.E., and Rosenkranz, H.S. 1975. Electron microscopic appearance of silver sulfadiazine-treated Enterobacter cloacae. Chemotherapy 21:231–235.CrossRefGoogle Scholar
  12. de Serres, F.J., and M.D. Shelby. 1979a. Recommendations on data production and analysis using the Salmonella/microsome mutagenicity assay. Mutation Res. 64:159–165.Google Scholar
  13. de Serres, F.J., and M.D. Shelby. 1979b. The Salmonella mutagenicity assay: recommendations. Science 203:563–565.ADSCrossRefGoogle Scholar
  14. de Serres, F.J., and J. Ashby. 1981. Evaluation of Short-Term Tests for Carcinogens. Elsevier/North Holland: Holland.Google Scholar
  15. Dunkel, V.C. 1979. Collaborative studies on the Salmonella/-microsome mutagenicity assay. J. Assoc. Off. Anal. Chem. 62:874–882.Google Scholar
  16. Dunkel, V.C, and V.F. Simmon. 1980. Mutagenic activity of chemicals previously tested for carcinogenicity in the National Cancer Institute Bioassay Program. In: Molecular and Cellular Aspects of Carcinogenic Screening Tests. R. Montesano, H. Bartsch, and L. Tomatis, eds. IARC Scientific Publication No. 27, International Agency for Research on Cancer: Lyons, pp. 283–301.Google Scholar
  17. Echols, H. 1981. SOS functions, cancer and inducible evolution. Cell 25:1–2.CrossRefGoogle Scholar
  18. El Bayoumy, K., and S.S. Hecht. 1981. Comparative metabolism of nitropolynuclear aromatic hydrocarbons. In: Sixth International Symposium Polynuclear Aromatic Hydrocarbons Abstracts. Battelle Laboratories: Columbus, Ohio.Google Scholar
  19. Fu, P.P., M.W. Chou, L.E. Unruh, F.A. Beland, F.F. Kadlubar, D.A. Casciano, R.H. Heflich, and F.E. Evans. In vitro metabolism of 6-nitrobenzo(a)pyrene: identification and mutagenicity of the metabolites. In: Sixth International Symposium Polynuclear Aromatic Hydrocarbons Abstracts. Battelle Laboratories: Columbus, Ohio.Google Scholar
  20. Goze, A., and R. Devoret. 1979. Repair promoted by plasmid pKM101 is different from SOS repair. Mutation Res. 61:163–179.CrossRefGoogle Scholar
  21. Halmes, Y.Y. 1977. Hierarchical Analyses of Water Resources Systems: Modeling and Optimization of Large-Scale Systems. McGraw-Hill: New York.Google Scholar
  22. Hsie, A.W. 1980. Quantitative mutagenesis and mutagen screening with Chinese hamster ovary cells. In: The Predictive Value of Short-Term Screening Tests in Carcinogenicity Evaluation. G.M. Williams, R. Kroes, H.W. Waaijers, and K.W. Van de Poll, eds. Elsevier/North Holland: Amsterdam, pp. 89–102.Google Scholar
  23. Karpinsky, G.E., E.C. McCoy, H.S. Rosenkranz, and R. Mermelstein 1982. The chemical activation of non-mutagenic nitrated polycyclic aromatic hydrocarbons to mutagens. Mutation Res. 92:29–37.CrossRefGoogle Scholar
  24. Kikuchi, O., A.J. Hopfinger, and G. Klopman. 1979a. Electronic structure and reactivity of four stereoisomers of benzo(a)-pyrene-7,8-diol-9,10-epoxide. Cancer Biochem. Biophys. 4:1.Google Scholar
  25. Kikuchi, O., A.J. Hopfinger, and G. Klopman. 1979b. Anew type of semiempirical molecular orbital method for large molecules. J. Theor. Biol. 77:129.CrossRefGoogle Scholar
  26. Löfroth, G., E. Hefner, I. Alfheim, and M. Miller. 1980. Mutagenic activity in photocopies. Science 109:1037–1039.CrossRefGoogle Scholar
  27. Löfroth, G. 1981. Comparison of the mutagenic activity in carbon black particulate matter and in diesel and gasoline engine exhaust. In: Application of Short-Term Bioassays in the Analysis of Complex Environmental Mixtures II. M.D. Waters, S.S. Sandhu, J.L. Huisingh, L. Claxton, and S. Nesnow, eds. Environmental Science Research, Vol. 22. Plenum Press: New York. pp. 319–336.Google Scholar
  28. Mattern, I.E., and H. Greim. 1978. Report of a workshop on bacterial in vitro mutagenicity test systems. Mutation Res. 53:369–378.Google Scholar
  29. McCann, J., N.E. Spingarn, J. Kobori, and B.N. Ames. 1975. Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc. Natl. Acad. Sci. USA 72:979–983.ADSCrossRefGoogle Scholar
  30. McCoy, E.C., H.S. Rosenkranz, and R. Mermelstein. 1981. Evidence for the existence of a family of bacterial nitroreductases capable of activating nitrated polycyclics to mutagens. Environ. Mutagen. 3:421–427.CrossRefGoogle Scholar
  31. McCoy, E.C., E.J. Rosenkranz, L.A. Petrullo, and H.S. Rosenkranz. 1981. Frameshift mutations: relative roles of simple intercalation and of adduct formation. Mutation Res. 90:21–30.CrossRefGoogle Scholar
  32. McCoy, E.C., E.J. Rosenkranz, L.A. Petrullo, H.S. Rosenkranz, and R. Mermelstein. 1981. Structural basis of the mutagenicity in bacteria of nitrated naphthalene and derivatives. Environ. Mutagen. 3:499–511.CrossRefGoogle Scholar
  33. McCoy, E.C., E.J. Rosenkranz, H.S. Rosenkranz, and R. Mermelstein. 1981. Nitrated fluorene derivatives are potent frameshift mutagens. Mutation Res. 90:11–20.CrossRefGoogle Scholar
  34. McCoy, E.C., and H.S. Rosenkranz. 1982. Cigarette smoking may yield nitroarenes. Cancer Lett. 15:9–13.CrossRefGoogle Scholar
  35. Mermelstein, R., D.K. Kiriazides, M. Butler, E.C. McCoy, and H.S. Rosenkranz. 1981. The extraordinary mutagenicity of nitropyrenes in bacteria. Mutation Res. 89:187–196.CrossRefGoogle Scholar
  36. Mermelstein, R., H.S. Rosenkranz, and E.C. McCoy (in press). The microbial mutagenicity of nitroarenes. In: The Genotoxic Effects of Airborne Agents, Brookhaven National Laboratory Symposium. Plenum Press: New York.Google Scholar
  37. Miller, J.A., and E.C Miller. 1977. Ultimate chemical carcinogens as reactive mutagenic electrophiles. In: Origins of Human Cancer. H.H. Hiatt, J.D. Watson, and J.A. Winsten, eds. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY. pp. 605–627.Google Scholar
  38. Monti-Bragadin, C., S. Venturini, and P.A. Todd. 1977. Interaction between two error-prone DNA repair systems in Escherichia coli. FEMS Microbiol. Lett. 2:125–128.CrossRefGoogle Scholar
  39. Pall, M.L. 1981. Gene-amplification model of carcinogenesis. Proc. Natl. Acad. Sci. USA 78:2465–2468.ADSCrossRefGoogle Scholar
  40. Petit, B., B. Potenzone, Jr., A.J. Hopfinger, G. Klopman, and M. Shapiro. 1979. A hierarchical QSAR molecular structure calculator applied to a carcinogenic nitrosamine data base. ACS Symposium Series No. 112 on Computer Assisted Drug Design. American Chemical Society: Washington, DC.Google Scholar
  41. Pitts, J.N., Jr., D.M. Lokensgard, W. Harger, T.S. Fisher, V. Majia, J.J. Schuler, G.M. Scorziell, and Y.A. Katzenstein. 1982. Mutagens in diesel exhaust particulate: identification and direct activities of 6-nitrobenzo(a)-pyrene, 9-nitroanthracene, 1-nitropyrene and 5H-phenanthro 4,5-(bcd) pyran-5-one. Mutation Res. 103:241–249.CrossRefGoogle Scholar
  42. Radman, M. 1977. Inducible pathways in deoxyribonucleic acid repair, mutagenesis and carcinogenesis. Biochem. Soc. Trans. 5:1194–1199.Google Scholar
  43. Radman, M., G. Villani, S. Boiteux, M. Defais, P. Caillet-Fauquet, and S. Spadari. 1977. On the mechanism and genetic control of mutagenesis induced by carcinogenic mutagens. In: Origins of Human Cancer, Book B. H.H. Hiatt, J.D. Watson, and J.A. Winsten, eds. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY. pp. 903–922.Google Scholar
  44. Radman, M. 1980. Is there SOS induction in mammalian cells? Photochem. Photobiol. 32:823–830.CrossRefGoogle Scholar
  45. Rosenkranz, E.J., E.C. McCoy, R. Mermelstein, and H.S. Rosenkranz. 1982. Evidence for the existence of distinct nitroreductases in Salmonella typhimurium: roles in mutagenesis. Carcinogenesis 3:121–123.CrossRefGoogle Scholar
  46. Rosenkranz, H.S., and H.S. Carr. 1972. Silver sulfadiazine: effect on the growth and metabolism of bacteria. Antimicrob. Ag. Chemother. 2:367–372.Google Scholar
  47. Rosenkranz, H.S., and S. Rosenkranz. 1972. Silver sulfadiazine: interaction with isolated DNA. Antimicrob. Ag. Chemother. 2:373–383.Google Scholar
  48. Rosenkranz, H.S., and W.T. Speck. 1975. Mutagenicity of metronidazole: activation by mammalian liver microsomes. Biochem. Biophys. Res. Comm. 66:520–525.CrossRefGoogle Scholar
  49. Rosenkranz, H.S., B. Gutter, and W.T. Speck. 1976. Mutagenicity and DNA-modifying activity: a comparison of two microbial assays. Mutation Res. 41:61–70.CrossRefGoogle Scholar
  50. Rosenkranz, H.S., and W.T. Speck. 1976. Activation of nitrofurantoin to a mutagen by rat liver nitroreductase. Biochem. Pharmacol. 25:1555–1556.CrossRefGoogle Scholar
  51. Rosenkranz, H.S., W.T. Speck, and B. Gutter. 1976. Microbial assay procedures: experience with two systems. In: In Vitro Metabolic Activation in Mutagenesis Testing. F.J. de Serres, J.R. Fouts, J.R. Bend, and R.M. Phelpot, eds. North Holland Publishing Co.: Amsterdam, pp. 337–363.Google Scholar
  52. Rosenkranz, H.S., E.C. McCoy, M. Anders, W.T. Speck, and D. Bickers. 1979. The use of microbial assay systems in the detection of environmental mutagens in complex mixtures. In: Application of Short-Term Bioassays in the Fractionation and Analysis of Complex Environmental Mixtures. M.D. Waters, S. Ne snow, J.L. Huisingh, S.S. Sandhu, and L. Claxton, eds. Plenum Press: New York. pp. 3–42.Google Scholar
  53. Rosenkranz, H.S., E.C. McCoy, L. Biuso, and W.T. Speck. 1979. Short-term microbial assays in the assessment of carcinogenic risk. In: The Use of Alternatives in Drug Research. A.N. Rowan, and C.J. Stratman, eds. Macmillans Press: London.Google Scholar
  54. Rosenkranz, H.S., and L.A. Poirier. 1979. An evaluation of the mutagenicity and DNA-modifying activity in microbial systems of carcinogens and non-carcinogens. J. Natl. Cancer Inst. 62:873–892.Google Scholar
  55. Rosenkranz, H.S., G. Karpinsky, and E.C. McCoy. 1980. Microbial assays: evaluation and application to the elucidation of the etiology of cancer. In: Short-Term Mutagenicity Test Systems for Detecting Carcinogens. K. Norpoth and R.C. Garner, eds. Springer-Verlag: Berlin, pp. 19–57.Google Scholar
  56. Rosenkranz, H.S., and Z. Leifer. 1980. Detection of carcinogens and mutagens with DNA repair-deficient bacteria. In: Chemical Mutagens, Principles and Methods for their Detection. Vol. 6. F.J. de Serres, ed. Plenum Press: New York. pp. 109–147.Google Scholar
  57. Rosenkranz, H.S., E.C. McCoy, D.R. Sanders, M. Butler, D.K. Kiriazides, and R. Mermelstein. 1980. Nitropyrenes: isolation, identification and reduction of mutagenic impurities in a carbon black and toners. Science 209:1039–1043.ADSCrossRefGoogle Scholar
  58. Rosenkranz, H.S., E.C. McCoy, R. Mermelstein, and W.T. Speck. 1981. A cautionary note on the use of nitroreductase-deficient strains of Salmonella typhimurium for the detection of nitroarenes as mutagens in complex mixtures including diesel exhausts. Mutation Res. 91:103–150.CrossRefGoogle Scholar
  59. Rosenkranz, H.S. 1982. Direct-acting mutagens in diesel exhausts: magnitude of the problem. Mutation Res. 101:1–10.CrossRefGoogle Scholar
  60. Rosenkranz, H.S., G.E. Karpinsky, M. Anders, E.J. Rosenkranz, L.A. Petrullo, E.C. McCoy and R. Mermelstein (in press). Adaptability of microbial mutagenicity assays to the study of problems of environmental concern. In: Induced Mutagenesis: Molecular Mechanisms and Their Implications for Environmental Protection. Plenum Press: New York.Google Scholar
  61. Rosenkranz, H.S., and R. Mermelstein (in press). The nitroarenes: genotoxicity and mutagenicity. Mutation Res.Google Scholar
  62. Sargentini, N.J., and K.C. Smith. 1981. Much of spontaneous mutagenesis in Escherichia coli is due to error-prone DNA repair: implications for spontaneous carcinogenesis. Carcinogenesis 2:863–872.CrossRefGoogle Scholar
  63. Seiler, J.P., I.E. Mattern, M.H.L. Green, and D. Anderson. 1980. Second European workshop on bacterial in vitro mutagenicity test systems (Ames Test Meeting 1979). Mutation Res. 74:71–75.Google Scholar
  64. Speck, W.T., P.D. Ellner, and H.S. Rosenkranz. 1975. Mutagenicity testing with Salmonella typhimurium strains, I. Mutation Res. 28:27–30.CrossRefGoogle Scholar
  65. Straus, D.S. 1981. Somatic mutation, cellular differentiation, and cancer causation. J. Natl. Cancer Inst. 67:233–241.Google Scholar
  66. Terada, M., M. Nakayasu, H. Sakamoto, K. Wakabayashi, M. Nagao, H.S. Rosenkranz, and T. Sugimura. 1981. Mutagenic activity of nitropyrenes and heterocyclic aromatic amines on Chinese hamster cells with diphtheria toxin as a marker. In: Third Int. Conf. Environ. Mutagen. Abstracts, p. 128.Google Scholar
  67. Todd, P.A., C. Monti-Bragadin, and B.W. Glickman. 1979. MMS mutagenesis in strains of Escherichia coli carrying the R46 mutagenic enhancing plasmid: phenotypic analysis of Arg+ revertants. Mutation Res. 62:227–237.CrossRefGoogle Scholar
  68. U.S. Congress. 1977. The Clean Air Act as amended August 1977. U.S. Government Printing Office, Serial No. 95–11, November.Google Scholar
  69. U.S. Environmental Protection Agency. 1979a. Health assessment document for polycyclic organic matter. EPA-Z/102. Office of Research and Development: Washington, DC.Google Scholar
  70. U.S. Environmental Protection Agency. 1979b. Preliminary assessment of the sources, control and population exposure to airborne polycyclic organic matter (POM) as indicated by benzo(a)pyrene (B[a]P). EPA-Z/100. Office of Air Quality Planning and Standards: Research Triangle Park, NC.Google Scholar
  71. Walker, G.C. 1978. Isolation and characterization of mutants of the plasmid pKM101 deficient in their ability to enhance mutagenesis and repair. J. Bacteriol. 133:1203–1211.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Herbert S. Rosenkranz
    • 1
  • Elena C. McCoy
    • 1
  • Robert Mermelstein
    • 2
  1. 1.Center for the Environmental Health Sciences, School of MedicineCase Western Reserve UniversityClevelandUSA
  2. 2.Joseph C. Wilson Center for TechnologyXerox CorporationRochesterUSA

Personalised recommendations