Skip to main content

Part of the book series: Environmental Science Research ((ESRH,volume 27))

Abstract

Oil shale deposits located in the western United States represent an abundant resource for recoverable synthetic crude oil (Yen and Chilingarin, 1976). Water coproduced with shale oil and decanted from it Is called oil shale process water. This water originates primarily from combustion, dehydration of minerals, and groundwater (Farrier et al., 1977). For every 100,000 barrels of shale oil produced per day, a process water production of 1.6 million gallons is estimated (Hendrickson, 1975; Shih et al., 1979; Strniste and Chen, 1981). Technologies must be developed for the safe handling, containment, and disposal of such process waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, B.N., J. McCann, and E. Yamasaki. 1975. Methods for detecting carcinogens and mutagens with Salmonella/mamma1ian microsome mutagenicity test. Mutation Res. 31:347–364.

    Google Scholar 

  • Bergman, H.L. 1980. Effects of Aqueous Effluents from In Situ Fossil Fuel Processing Technologies on Aquatic Systems. DOE/LETC/10058-T1. Department of Energy: Washington, DC.

    Google Scholar 

  • Cochran, E.G. 1977. Sampling Techniques. Wiley and Sons: New York.

    MATH  Google Scholar 

  • Farrier, D.S., R.E. Poulson, Q.D. Skinner, J.C. Adams, and J.P. Bower. 1977. Acquisition, processing and storage for environmental research of aqueous effluents from in situ oil shale processing. Proceedings of the 2nd Pacific Chemical Engineering Congress, Denver, CO, Volume II. p. 1031.

    Google Scholar 

  • Fox, J.P., D.S. Farrier, and R.E. Poulson. 1978. Chemical Characterization and Analytical Considerations for an In Situ Oil Shale Process Water. LETC/RI-78/7. Department of Energy: Washington, DC.

    Google Scholar 

  • Hendrickson, T.A., ed. 1975. Synthetic Fuels Data Handbook. Cameron Engineers, Inc.: Denver, pp. 3–112.

    Google Scholar 

  • Hurtubise, R.J., G.T. Skar, and R.E. Poulson. 1978. Determination of benzo(a)pyrene in shale oil by solid surface fluorescence. Anal. Chimica Acta 97:13–19.

    Article  Google Scholar 

  • Hurtubise, R.J., J.D. Phillip, and G.T. Skar. 1978. Determination of benzo(a)pyrene in a filtered retort water sample of solid-surface fluorescence. Anal. Chimica Acta 101:333–338.

    Article  Google Scholar 

  • Kimball, R.F. 1950, The effect of radiation on genetic mechanisms of Paramecium aurelia. J. Cell Comp. Physiol. 35(suppl.):157–169.

    Article  Google Scholar 

  • Kimball, R.F. 1963. X-ray dose rate and dose fractionation studies on mutations in Paramecium. Genetics 48:581–595.

    Google Scholar 

  • Kimball, R.F. 1965. The induction of repairable premutational damage in Paramecium aurelia by the alkylating agent triethylene melamine. Mutation Res. 2:414–425.

    Google Scholar 

  • Kimball, R.F. 1969. Studies on mutations induced by ultraviolet irradiation in Paramecium aurelia with special emphasis on photoreversal. Mutation Res. 8:79–89.

    Article  Google Scholar 

  • Kimball, R.F. and N. Gaither. 1951. The influence of light upon the action of UV on Paramecium aurelia. J. Cell Comp. Physiol. 37:211–233.

    Article  Google Scholar 

  • Kimball, R.F. and S.W. Perdue. 1962. Studies on the refractory period for the induction of recessive lethal mutations by X rays in Paramecium. Genetics 49:1595–1607.

    Google Scholar 

  • Kimball, R.F. and S.W. Perdue. 1967. Comparison of mutagenicity of X rays and triethylene melamine in Paramecium with emphasis on the role of mitosis. Mutation Res. 4:37–50.

    Article  Google Scholar 

  • Kimball, R.F., N. Gaither, and S. Wilson. 1959. Reduction of mutations by postirradiation treatment after ultraviolet and various kinds of ionizing radiation. Radiât. Res. 10:490–497.

    Article  Google Scholar 

  • McCann, J., N.D. Spingarn, J. Kobari, and B.N. Ames. 1975. Detection of carcinogens: bacterial strains with R factor Plasmids. Proc. Natl. Acad. Sci. USA 72:979–983.

    Article  ADS  Google Scholar 

  • Mendenhall, W. 1975. Introduction to Probability and Statistics, 4th ed. Duxbury Press: Belmont, p. 186.

    Google Scholar 

  • Rodermel, S. and J. Smith-Sonneborn. 1977. Age-correlated changes in expression of micronuclear damage and repair in Paramecium tetraurelia. Genetics 87:259–274.

    Google Scholar 

  • Shih, C.C., J.E. Cotter, C.H. Prien, and T.D. Nevens. 1979. Technological Overview Reports for Eight Shale Oil Recovery Processes. EPA-600/7–79–075. U.S. Environmental Protection Agency: Cincinnati, OH.

    Google Scholar 

  • Smith-Sonneborn, J. 1974. Acridine orange fluorescence: a temporary stain for paramecia. Stain Technol. 49:77–80.

    Google Scholar 

  • Smith-Sonneborn, J. 1979. Use of a ciliated protozoan as a model system to detect toxic and carcinogenic agents. In: In-Vitro Toxicity Testing of Environmental Agents: Current and Future Possibilities. Monte Carlo.

    Google Scholar 

  • Smith-Sonneborn, J., R.A. Palizzi, C. Herr, and G.L. Fisher. 1981a. Mutagenicity of fly ash particles in Paramecium. Science 211:180–182.

    Article  ADS  Google Scholar 

  • Smith-Sonneborn, J., G.L. Fisher, R.A. Palizzi, and C. Herr. 1981b. Mutagenicity of coal fly ash: a new bioassay for mutagenic potential in a particle feeding ciliate. Environ. Mutagen. 3:239–252.

    Article  Google Scholar 

  • Sonneborn, T.M. 1970. Methods in Paramecium research. In: Methods in Cell Physiology. D.M. Prescott, ed. Academic Press: New York. pp. 241–541.

    Google Scholar 

  • Sonneborn, T.M. 1974. Paramecium aurelia. In: Handbook of Genetics. R.C. King, ed. Plenum Press: New York, pp. 469–595.

    Google Scholar 

  • Strniste, G.F. and D.J. Chen. 1981. Cytotoxic and mutagenic properties of shale oil byproducts, I: activation of retort process waters with near ultraviolet light. Environ. Mutagen. 3:221–231.

    Article  Google Scholar 

  • Yen, T.F. and G.V. Chilingarin. 1976. Introduction to oil shales. In: Oil Shale. T.F. Yen and G.V. Chilingarin, eds. Elsevier Scientific Publishing Co.: Amsterdam, pp. 1–2.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Smith-Sonneborn, J., McCann, E.A., Palizzi, R.A. (1983). Bioassays of Oil Shale Process Waters in Paramecium and Salmonella . In: Waters, M.D., Sandhu, S.S., Lewtas, J., Claxton, L., Chernoff, N., Nesnow, S. (eds) Short-Term Bioassays in the Analysis of Complex Environmental Mixtures III. Environmental Science Research, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3611-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3611-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3613-6

  • Online ISBN: 978-1-4613-3611-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics