Skip to main content

Electronic Structure of Molecules Using Relativistic Effective Core Potentials

  • Chapter
Relativistic Effects in Atoms, Molecules, and Solids

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 87))

Abstract

The application of ab initio techniques to molecular electronic structure has enabled the quantum chemist to make reliable predictions of molecular geometries and spectroscopic properties, to calculate excitation and ionization energies, and to characterize transition states and energy barriers in chemical reactions Investigations of the electronic properties of molecules containing heavier atoms (such as transition-metal or actinide compounds) has been hampered by (1) the increase in computational effort (by roughly N4) with the number of electrons (N) in heavier atoms and (2) the importance of relativistic effects, even on valence electrons, with increasing Z.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. D. Cowan and D. C. Griffin, “Approximate Relativistic Corrections to Atomic Radical Wave Functions,” J. Opt. Soc. Am. 66, 1010 (1976).

    Article  ADS  Google Scholar 

  2. L. R. Kahn, P. J. Hay, and R. D. Cowan, “Relativistic Effects Ab Initio Effective Core Potentials for Molecular Calculations. Application to the Uranium Atom,” L. R. Kahn, P. J. Hay, and R. D. Cowan, J. Chem. Phys. 68, 2368 (1978).

    Google Scholar 

  3. L. R. Kahn, P. Baybutt, and D. Truhlar, “Ab Initio Effective Core Potentials,” J. Chem. Phys. 65, 3826 (1976).

    Article  ADS  Google Scholar 

  4. P. J. Hay, W. R. Wadt, and L. R. Kahn, “Ab Initio Effective Core Potentials for Molecular Calculations. II,” J. Chem. Phys. 68, 3059 (1978).

    Article  ADS  Google Scholar 

  5. P. A. Christiansen, Y. S. Lee, and K. S. Pitzer, “Improved Ab Initio Effective Core Potentials for Molecular Calculations,” J. Chem. Phys. J. 71, 4445 (1979).

    Article  ADS  Google Scholar 

  6. P. J. Hay and T. H. Dunning, “Covalent and Ionic States of thé Xenon Halides,” J. Chem. Phys. 69, 2209 (1978).

    Article  ADS  Google Scholar 

  7. W. R. Wadt, P. J. Hay, and L. R. Kahn, “Relativistic and Non- Relativistic Effective Core Potentials for Xenon. Applications to XeF, Xe2, and Xe2 +,” J. Chem. Phys. 68, 1752 (1978).

    Article  ADS  Google Scholar 

  8. J. S. Cohen, W. R. Wadt, and P. J. Hay, “Spin-Orbit Coupling and Inelastic Transitions in Collisions of 0(1D) with Ar, Kr, and Xe,” J. Chem. Phys. 71, 2955 (1979), and references therein for a discussion of the effective spin-orbit operator.

    Article  ADS  Google Scholar 

  9. W. R.Wadt, “An Approximate Method to Incorporate Spin-Orbit Effects into Calculations Using Effective Core Potentials,” Chem. Phys. Lett., in press.

    Google Scholar 

  10. S. R. Langhoff, “Spin-Orbit Coupling in Rare-Gas Oxides,” J. Chem. Phys. 73, 2379 (1980).

    Article  ADS  Google Scholar 

  11. R. L. Martin and P. J. Hay, “Relativistic Contributions to the Low-Lying Excitation Energies and Ionization Potentials of the Transition Metals,” J. Chem. Phys. 75, 4539 (1981).

    Article  ADS  Google Scholar 

  12. J. P. Desclaux and P. Pyykko, “Dirac-Fock One-Center Calculations,” Chem. Phys. Lett. 39, 300 (1976).

    Article  ADS  Google Scholar 

  13. P. J. Hay, W. R. Wadt, L. R. Kahn, and F. W. Bobrowicz, “Ab Initio Studies of AuH, AuC1, HgH, and HgC12 Using Relativistic Effective Core Potentials,” J. Chem. Phys. 69, 984 (1978).

    Article  ADS  Google Scholar 

  14. Y. S. Lee and A. D. McLean, “Relativistic Effects on Re and De in AgH and AuH From All-Electron Dirac-Hartree-Fock Calculations,” J. Chem. Phys. 76, 735 (1982).

    Article  ADS  Google Scholar 

  15. J. O. Noell and P. J. Hay, “Ab Initio Studies of the Structures of Square Planar Pt(PH3)2XY Species (X,Y=HC1) and Bonding of Hydrido- and Using Relativistic Effective Core Potentials,” Inorg. Chem. 21, 14 (1982).

    Article  Google Scholar 

  16. J. O. Noell and P. J. Hay, “An Ab Initio Study of the Oxidative Addition of H2 to a Pt(0) Complex,” J. Amer. Chem. Soc., in press.

    Google Scholar 

  17. P. J. Hay, “The Binding of Ethylene to Platinum and Palladium. An Ab Initio Study of the MCℓ3(C2H4)- Species,” J. Amer. Chem. Soc. 103, 1390 (1981).

    Article  Google Scholar 

  18. P. J. Hay, “The Electronic States of Ptℓ4 2-,” in preparation.

    Google Scholar 

  19. P. J. Hay, W. R. Wadt, L. R. Kahn, R. C. Raffenetti, and D. H. Phillips, “Ab Initio Studies of the Electronic Structure of UF6, UF6 +, and UF6 - Using Relativistic Effective Core Potentials,” J. Chem. Phys. 70, 1767 (1979).

    Article  ADS  Google Scholar 

  20. W. R. Wadt and P. J. Hay, “Ab Initio Studies of the Electronic Structure and Geometry of UF5 Using Relativistic Effective Core Potentials,” J. Amer. Chem. Soc. 101, 5198 (1979).

    Article  Google Scholar 

  21. W. R. Wadt, “Why U02 ++ is Linear and Isoelectronic Th02 is Bent,” J. Am. Chem. Soc. 103, 6053 (1981).

    Article  Google Scholar 

  22. P. J. Hay, “Electronic States of UF6,” in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Hay, P.J. (1983). Electronic Structure of Molecules Using Relativistic Effective Core Potentials. In: Malli, G.L. (eds) Relativistic Effects in Atoms, Molecules, and Solids. NATO Advanced Science Institutes Series, vol 87. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3596-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3596-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3598-6

  • Online ISBN: 978-1-4613-3596-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics