Advertisement

Fully Relativistic Effective Core Potentials (FRECP)

  • Yasuyuki Ishikawa
  • G. L. Malli
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 87)

Abstract

A method is developed for obtaining fully relativistic effective core potentials from numerical Dirac-Fock self-consistent-field calculations. Analytical forms for the effective core potentials are derived for Ca and T1, and the results of valence-only Dirac-Fock calculations are presented.

Keywords

Valence Electron Effective Potential Small Component Core Spin Relativistic Effective Core Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. K. Kim, Phys. Rev. 154, 17 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    T. Kagawa, Phys. Rev. A12, 2245 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    G. L. Malli and J. Oreg, J. Chem. Phys. 63, 830 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    O. Matsuoka, N. Suzuki, T. Aoyama and G. Malli, J. Chem. Phys. 73, 1320 (1980).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    F. Mark and F. Rosicky, Chem. Phys. Lett. 74, 562 (1980).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    E. R. Davidson, Y. Ishikawa and G. L. Malli, presented during the panel discussion of this NATO ASI.Google Scholar
  7. 7.
    P. Pyykko and J. P. Desclaux, Acc. Chem. Res. 12, 276 (1979).CrossRefGoogle Scholar
  8. 8.
    L. R. Kahn, P. J. Hay and R. D. Cowan, J. Chem. Phys. 68, 2386 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    Y. S. Lee, W. C. Ermler and K. S. Pitzer, J. Chem. Phys. 67, 5861 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    P. A. Christiansen and K. S. Pitzer, J. Chem. Phys. 73, 5160 (1980); P.A. Christiansen, Y.S. Lee and K.S. Pitzer, J. Chem. Phys. 71, 4445 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    G. Das and A. C. Wahl, J. Chem. Phys. 69, 53 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    P. J. Hay, W. R. Wadt, L. R. Kahn and F. W. Bobrowicz, J. Chem. Phys. 69, 984 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    S. N. Datta, C. S. Ewig and J. R. Van Wazer, Chem. Phys. Lett. 57, 83 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    P. Hafner and W. H. E. Schwarz, J. Phys. B11, 217 (1978).ADSGoogle Scholar
  15. 15.
    N. C. Pyper, Mol. Phys. 39, 1327 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    E. R. Davidson, Y. Ishikawa, and G. L. Malli, Chem. Phys. Lett, in print.Google Scholar
  17. 17.
    V. Fock, W. Wesselov and M. Petraschen, Zh. Eksp. Teor. Fiz. 10 723 (1940).Google Scholar
  18. 18.
    J. P. Desclaux, Comput. Phys. Commun. 9, 31 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    I. P. Grant, Adv. Phys. 19, 747 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    V. Bonifacic and S. Huzinaga, J. Chem. Phys. 60, 2779 (1974); O. Gropen, S. Huzinaga and A.D. Mclean, J. Chem. Phys. 73, 402 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Ishikawa (unpublished).Google Scholar
  22. 22.
    G. Simons, J. Chem. Phys. 55, 756 (1971).ADSCrossRefGoogle Scholar
  23. 23.
    P. Hafner, Y. Ishikawa and W. H. E. Schwarz, “Quasi-Relativistic Model Potential Method: Theory and Applications”, Abstracts of Third International Congress of Quantum Chemistry, Kyoto, Japan (1979).Google Scholar
  24. 24.
    S. J. Rose, I. P. Grant, and N. C. Pyper, J. Phys. B11, 1171 (1978)ADSGoogle Scholar
  25. 25.
    P. Pyykko and J. P. Desclaux, Chem. Phys. Lett 42, 545 (1976)CrossRefGoogle Scholar
  26. 26.
    L. R. Kahn, P. Baybutt and D. G. Truhlar, J. Chem. Phys. 65, 3826 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Yasuyuki Ishikawa
    • 1
  • G. L. Malli
    • 1
    • 2
  1. 1.Department of ChemistrySimon Fraser UniversityBurnabyCanada
  2. 2.Department of Chemistry and Theoretical Sciences InstituteSimon Fraser UniversityBurnabyCanada

Personalised recommendations