Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 87))

Abstract

Because a solid can be viewed as a collection of interacting atoms, it will exhibit all the relativistic effects known to occur in atoms. In fact, the relativistic contributions in solids arise exclusively from the atomic-like regions of space near the nucleii with the interstitial region being quite well described in a non-relativistic approximation. Thus, for those band structure techniques such as the APW, KKR and related methods which partition space into atomic like spheres and an interstitial region, it is actually possible to “switch kinematics” at the boundary as well. Such a procedural step not only tells one how to include the relativistic contributions but also how to predict their effects: they will be the atomic results only slightly modified by the differing boundary conditions. We will discuss this using simplified views of the APW and LCAO methods as examples.

Work supported by the U.S. Department of Energy and National Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Desclaux and P. Pyykkö, Chem. Phys. 29, 534 (1974); J. P. Desclaux, 42, 545 (1978); Recherche (Fr.) 11, 592 (1980).

    ADS  Google Scholar 

  2. J. P. Desclaux, Phys. Scr. 21, 436 (1980).

    Article  ADS  Google Scholar 

  3. P. Pyykkö,, Adv. Quant. Chem. 11, 353 (1978).

    Article  Google Scholar 

  4. T. Ziegler, J. G. Snijders and E. J. Baerends, J. Chem. Phys. 74, 1271 (1981).

    Article  ADS  Google Scholar 

  5. J. C. Slater, Phys. Rev. 51, 846 (1937).

    Article  ADS  MATH  Google Scholar 

  6. T. L. Loacks, Phys. Rev. 139, A1333 (1965).

    Article  ADS  Google Scholar 

  7. L. F. Mattheiss, Phys. Rev. _151, 450 (1967).

    Google Scholar 

  8. J. O. Dimmock, Solid State Physics Advances in Research and Applications 26, 103 (1971).

    Google Scholar 

  9. O. K. Andersen, Phys. Rev. B2 882 (1970).

    Google Scholar 

  10. G. 0. Arbman and D. D. Koelling, Phys. Scr. 5 273 (1972).

    Article  ADS  Google Scholar 

  11. D. D. Koelling, Phys. Rev. 188, 1049 (1969).

    Article  ADS  Google Scholar 

  12. E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); E. Wigner, 46, 509 (1934).

    Article  ADS  MATH  Google Scholar 

  13. O. K. Andersen, Phys. Rev. B12, 3060 (1975).

    Article  ADS  Google Scholar 

  14. J. C. Slater, Phys. Rev. 92, 603 (1953).

    Article  ADS  MATH  Google Scholar 

  15. J. C. Duthie and D. G. Pettifor, Phys. Rev. Lett. 38, 564 (1977).

    Article  ADS  Google Scholar 

  16. L. Hodges, H. Ehrenreich and N. D. Lang, Phys. Rev. 152, 505 (1966).

    Article  ADS  Google Scholar 

  17. F. M. Mueller, Phys. Rev. 153, 659 (1967).

    Article  ADS  Google Scholar 

  18. H. Hill, Nucl. Met. 17, 2 (1970); E. A. Kmetko and H. Hill, Nucl. Met. 17, 233 (1970).

    Google Scholar 

  19. H. Hill and E. A. Kmetko, Heavy Element Properties (W. Miller and H. Blank ed.) North Holland, p 17 (1975).

    Google Scholar 

  20. D. D. Koelling, Rep. Prog. Phys. 44, 139 (1981).

    Article  ADS  Google Scholar 

  21. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1951).

    Article  ADS  Google Scholar 

  22. J. Friedel, P. Lenglart and G. Leman, J. Phys. Chem. Solids 25, 781 (1964).

    Article  ADS  Google Scholar 

  23. T. S. Rahman, J. C. Parlebas and D. L. Mills, J. Phys. F. 8, 2511 (1978).

    Article  ADS  Google Scholar 

  24. Inversion symmetry will be assumed in most of the following.

    Google Scholar 

  25. See for example Y. Yafet, Solid State phys. 13, 1 (1963).

    Google Scholar 

  26. N. E. Christensen, J. Phys. F8, L51 (1978).

    Google Scholar 

  27. L. F. Mattheiss and R. E. Dietz, Phys. Rev. 22, 1663 (1980).

    Article  ADS  Google Scholar 

  28. A. H. MacDonald, J. M. Daams, S. H. Vosko and D. D. Koelling,Phys. Rev. B23, 6377 (1981).

    Google Scholar 

  29. A. H. MacDonald, J. M. Daams, S. H. Vosko and D. D. Koelling,Phys. Rev. B(in press).

    Google Scholar 

  30. A. H. MacDonald unpublished (1981).

    Google Scholar 

  31. For a more general theoretical development see P. K. Misra and L. Kleinman, Phys. REv. B5, 4581 (1972) and references therein. The relationship between the present approach and the expressions given by Misra and Kleinman is discussed elsewhere; A. H. MacDonald unpublished (1981).

    Google Scholar 

  32. A. H. MacDonald and D. J. W. Geldart, Phys. Rev. B (1981).

    Google Scholar 

  33. F. M. Mueller, A. H. Freeman and D. D. Koelling, J. Appl. Phys. 41, 1229 (1970).

    Article  ADS  Google Scholar 

  34. L. Hodges, D. R. Stone and A. V. Gold, Phys. Rev. Lett. 19, 655 (1967).

    Article  ADS  Google Scholar 

  35. See for example, Calculated Electronic Properties of Metals, V. L. Moruzzi, J. F. Janak and A. R. Williams (Pergamon, New York, 1978) and references therein.

    Google Scholar 

  36. C. Herring in Magnetism, G. T. Rado and H. Suhl, Eds. ( Academic Press, New York, 1966 ).

    Google Scholar 

  37. D. E. Ellis A. Rosén and P. F. Walch, Int. J. Quant. Chem. 95, 351 (1975); D. E. Ellis, Int. J. Quant. Chem. 118, 201 TT977); D. E. Ellis, NATO Adv. Study Ser. B48, 107(l980).

    Google Scholar 

  38. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 Tl964); W. Kohn and L. J. Sham, Phys. Rev. 140A, 1133 (1965).

    Article  Google Scholar 

  39. A. K. Rajagopal, J. Phys. Cll, L943 (1978).

    Google Scholar 

  40. A. H. MacDonald and S. H. Vosko, J. Phys. C12, 2977 (1979).

    Google Scholar 

  41. I. A. Akhiezer and Peletminskii, Sov. Phys-JETP 11, 2977 (1979).

    Google Scholar 

  42. B. Jancovic, Nuouo Cim. 25, 429 (1962).

    Google Scholar 

  43. G. Baym and S. W. Chin, Nucl. Phys. A262, 527 (1976).

    Article  Google Scholar 

  44. M. V. Ramana and A. K. Rajagopal, Phys. Rev. A, to be published (1981).

    Google Scholar 

  45. G. Breit, Phys. Rev. 34, 553 (1929), Phys. Rev. 36, 383 (1930), Phys. Rev. 39, 616 (1932).

    Article  MathSciNet  ADS  Google Scholar 

  46. J. B. Mann and W. R. Johnson, Phys. Rev. A41, 41 (1971).

    Google Scholar 

  47. C. E. Burgess and A. H. MacDonald unpublished.

    Google Scholar 

  48. A. H. MacDonald, Ph.D. Thesis, U. of Toronto (1978).

    Google Scholar 

  49. K. N. Huang, M. Aoyagi, M. H. Chen and B. Craseman, At. Data and Nuc. Data 18, 243 (1976).

    Article  ADS  Google Scholar 

  50. M. V. Ramana, A. K. Rajogopal and W. R. Johnson, submitted for publication (1981).

    Google Scholar 

  51. A. K. Rajagopal and J. Callaway, Phys. Rev. B7, 1912 (1973).

    Google Scholar 

  52. M. V. Ramana and A. K. Rajagopal, J. Phys. C12, L845 (1979).

    Google Scholar 

  53. M. V. Ramana and A. K. Rajogopal, J. Phys. C to be published (1981).

    Google Scholar 

  54. U. von Barth and L. Hedin, J. Phys. C5, 1629 (1972).

    Google Scholar 

  55. In transition metals the main relativistic effect of the m dependence of Exc[n,m] is likely to be due to the spin- orbit coupling of the single-particle states. This is no analog of spin-orbit coupling in the relativistic electron gas.

    Google Scholar 

  56. L. F. Mattheiss, J. H. Wood and A. C. Switendick, Meth. Comp. Phys. 8, 63 (1968).

    Google Scholar 

  57. B. N. Harmon and D. D. Koelling, P. Phys. C7, L210 (1974).

    Google Scholar 

  58. P. M. Marcus, Int. J. Quant. Chem. IS, 567 (1967).

    Google Scholar 

  59. T. Takeda and J. Klibber, J. Phys. F9 661 (1979); T. Takeda, J. Phys. F9, 815 (1979).

    Google Scholar 

  60. D. D. Koelling and G. 0. Arbman, J. Phys. F5, 2041 (1975).

    Google Scholar 

  61. J. E. Müller, Ph.D. Thesis, Cornell (1980).

    Google Scholar 

  62. Y. Onodera and M. Okazaki, J. Phys. Soc., Japan 21, 1273 (1966)

    Article  ADS  Google Scholar 

  63. J. Treusch and K. R. Sandroc, Phys. Stat. Solidi 16, 487 (1966)

    Article  ADS  Google Scholar 

  64. S. Takada, Prog. Theor. Phys. 36, 224 (1966).

    Article  ADS  Google Scholar 

  65. J. B. Conklin, Jr., L. E. Johnson and G. W. Pratt, Jr., Phys. Rev. 137A, 1282 (1965).

    Google Scholar 

  66. M. E. Rose Relativistic Electron Theory, J. Wiley and Sons, p. 123–126.

    Google Scholar 

  67. F. Rosicky and F. Mark, J. Phys. B8, 2581 (1975).

    Google Scholar 

  68. F. Rosicky, P. Weinberger and F. Mark, J. Phys. B9, 2971 (1976)

    Google Scholar 

  69. D. D. Koelling and B. N. Harmon, J. Phys. C10, 3107 (1977).

    Google Scholar 

  70. A. H. MacDonald, W. E. Pickett and D. D. Koelling, J. Phys. C13, 2675 (1980).

    Google Scholar 

  71. H. Gollisch and L. Fritsche, Phys. Stat. Sol. (b) 86, 145 (1978).

    Article  ADS  Google Scholar 

  72. T. Takeda, Z. Physik B 32, 43 (1978).

    Article  ADS  Google Scholar 

  73. J. H. Wood and A. M. Boring, Phys. Rev. B18, 2701 (1978).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Koelling, D.D., MacDonald, A.H. (1983). Relativistic Effects in Solids. In: Malli, G.L. (eds) Relativistic Effects in Atoms, Molecules, and Solids. NATO Advanced Science Institutes Series, vol 87. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3596-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3596-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3598-6

  • Online ISBN: 978-1-4613-3596-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics