Skip to main content

Transport of Substances Throughout the Neuron

  • Chapter
The Chemistry of Behavior

Abstract

The substances that are synthesized in the nerve cell body either remain in the perikaryon, or are transported toward the periphery along the dendrites or axon. For the most part, the axonal and dendritic processes are metaboli cally dependent upon the synthetic capacity of the perikaryon. They require regular provisions of macromolecules and organelles, the great percentage of which is supplied by this active movement from the sites of synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Readings

  • Allaudeen, H.S.: DNA and RNA polymerases of mammalian cells and tumor viruses. Pharmac. Ther. A 2:447–476 (1978).

    Google Scholar 

  • Barondes, S.H.: Synaptic macromolecules: Identification and metabolism. Ann. Rev. Biochem. 43:147–168 (1974).

    PubMed  Google Scholar 

  • Barraco, R.A., Stettner, L.J.: Antibiotics and memory. Psychol. Bull. 83:242–302 (1976).

    PubMed  Google Scholar 

  • Baldessarini, R.J., Karobath, M.: Biochemical physiology of central synapses. Ann. Rev. Physiol. 35:273–304 (1973).

    Google Scholar 

  • Bock, E.: Nervous system specific proteins. J. Neurochem. 30:7–14 (1978).

    PubMed  Google Scholar 

  • Brawerman, G.: The role of the poly(A) sequence in mammalian messenger RNA. Crit. Rev. Biochem. 10:1–38 (1981).

    Google Scholar 

  • Cheung, W.Y.: Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27 (1980).

    PubMed  Google Scholar 

  • Fox, I.H.: Purine ribonucleotide catabolism: Clinical and biochemical significance. Nutr. Metabol. 16:65–78 (1974).

    Google Scholar 

  • Gagnon, C., Heisler, S.: Protein carboxyl-methylation—Role in exocytosis and chemotaxis. Life sci. 25:993–1000 (1979).

    PubMed  Google Scholar 

  • Grafstein, B., Forman, D.S.: Intracellular transport in neurons. Physiol. Rev. 60:1168–1282 (1980).

    Google Scholar 

  • Greengard, P.: Cyclic Nucleotides, Phosphorylated Proteins, and Neuronal Function. Raven Press: New York (1978).

    Google Scholar 

  • Grollman, A.P., Huang, M.T.: Inhibitors of protein synthesis in eukaryotes: Tools in cell research. Fed. Proc. 32:1673–1678 (1973).

    PubMed  Google Scholar 

  • Hebb, D.O.: The Organization of Behavior. Wiley: New York (1949).

    Google Scholar 

  • Jungmann, R.A., Kranias, E.G.: Nuclear phosphoprotein kinases and the regulation of gene transcription. Int. J. Biochem. 8:819–830 (1977).

    Google Scholar 

  • Levine, J., Skene, P., Willard, M.: GAPS and fodrin. Novel axonally transported proteins. Trends Neurosci. 4:273–277 (1981).

    Google Scholar 

  • Lincoln, T.M., Corbin, J.D.: Hypothesis—Role of cAMP and cGMP—dependent protein kinases in cell-function. J. Cycl. Nucleotide Res. 4:3–14 (1978).

    Google Scholar 

  • Margolis, R.U., Margolis, R.K.: Metabolism and function of glycoproteins and glycosaminogly-cans in nervous tissue. Int. J. Biochem. 8:85–91 (1977).

    Google Scholar 

  • Marks, N.: Exopeptidases of the nervous system. Int. Rev. Neurobiol. 11:57–97 (1968).

    PubMed  Google Scholar 

  • Mcllwain, H.: Extended roles in the brain for second—messenger systems. Neuroscience 2:357–372 (1977).

    Google Scholar 

  • Nathanson, J.A.: Cyclic nucleotides and nervous system function. Physiol Rev. 57:157–256 (1979).

    Google Scholar 

  • Nicholls, D.G., Crompton, M.: Mitochondrial calcium transport. FEBS Lett. 111:261–268 (1980).

    PubMed  Google Scholar 

  • Routtenberg, A.: Anatomical localization of phosphoprotein and glycoprotein substrates of memory. Progr. Neurobiol. 12:85–113 (1979).

    Google Scholar 

  • Samir Amer, M., Kreighbaum, W.E.: Cyclic nucleotide phosphodiesterases—Properties, activators, inhibitors, structure-activity-relationships, and possible role in drug development. J. Pharmaceut. sci. 64:1–37 (1975).

    Google Scholar 

  • Schwab, M.E., Thoenen, N.: Retrograde axonal and transsynaptic transport of macromolecules—physiological and pathophysiological importance. Agents Actions 7:361–368 (1977).

    PubMed  Google Scholar 

  • Wang, J.H., Waisman, D.M.: E.R. Stadtman (Eds.), Academic Press: New York (1979), pp. 47–107.

    Google Scholar 

  • Wiegant, V.M.: Cyclic nucleotides in nervous tissue. Brain Res. Bull. 3:611–622 (1978).

    PubMed  Google Scholar 

  • Zomzely-Neurath, C., Keller, A.: Nervous system—specific proteins of vertebrates. Neurochem. Res. 2:353–377 (1977).

    Google Scholar 

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Reinis, S., Goldman, J.M. (1982). Transport of Substances Throughout the Neuron. In: The Chemistry of Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3590-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3590-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3592-4

  • Online ISBN: 978-1-4613-3590-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics