Advertisement

The Unity of Combinatorics

  • Richard K. Guy
Part of the Mathematics and Its Applications book series (MAIA, volume 329)

Abstract

One reason why Combinatorics has been slow to become accepted as part of mainstream Mathematics is the common belief that it consists of a bag of isolated tricks, a number of areas:

combinatorial number theory (partitions, integer sequences), combinatorial set theory, Ramsey theory, partially ordered sets, lattices (in both the poset and number-theoretic senses), error-correcting codes, combinatorial designs (latin squares and rectangles, projective and affine geometries, Steiner systems, Kirk-man’s schoolgirls problem), combinatorial games, enumerative combinatorics (recurrence relations, generating functions), 0–1 matrices, graph theory (including tournaments, topological properties, coloring problems), combinatorial geometry, packing fc covering (in number-theoretic, set-theoretic, graph-theoretic or geometric contexts)

with little or no connexion between them. We shall see that they have numerous threads weaving them together into a beautifully patterned tapestry.

Keywords

Complete Graph Hadamard Matrice Hadamard Matrix Steiner Triple System Steiner System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. E. Alekseev, On the Skolem method of constructing Steiner triple systems (Russian), Mat Zametki, 2(1967) 145–156; MR 35 #5341. [x+y = z]MathSciNetGoogle Scholar
  2. [2]
    W. W. Rouse Ball fc H. S. M. Coxeter, Mathematical Recreations & Essays, 12th edition, Univ. of Toronto, 1974. [36-40 Nim & Wythoff’s Game; 115–116 squaring the square; 149–152 sphere packing; 189–192 latin squares; 193–221 magic squares; 222–242 map coloring; 271–311 combinatorial de-signs, an excellent survey written by J. J. Seidel]Google Scholar
  3. [3]
    Thøger Bang, On the sequence [], n = 1, 2,..., supplementary note to the previous paper by Th. Skolem, Math. Scand., 5(1957) 69–76; MR 19, 1159h. [Skolem problem]MathSciNetGoogle Scholar
  4. [4]
    S. Beatty, Problem 3173, Amer. Math. Monthly, 33(1926) 159; 34(1927) 159. [Beatty sequences]CrossRefGoogle Scholar
  5. [5]
    Claude Beige, The Theory of Graphs and its Applications, Methuen, London, 1962, p. 38. [Isaacs’s Game]Google Scholar
  6. [6]
    E. R. Berlekamp, J. H. Conway & R. K. Guy, Winning Ways for Your Mathematical Plays, Academic Press, London, 1982. [sum of games, p. 32; nim addition, pp. 60–61; Wyt Queens, p. 61; nim-values, pp. 82–87; V-positions, p. 83; Turning Turtles, p. 429]zbMATHGoogle Scholar
  7. [7]
    T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986. [a comprehensive reference for Steiner systems and difference methods]zbMATHGoogle Scholar
  8. [8]
    Charles L. Bouton, Nim, a game with a complete mathematical theory, Ann. of Math., Princeton,(2) 3(1901-02) 35–39.MathSciNetGoogle Scholar
  9. [9]
    R. L. Brooks, C. A. B. Smith, A. H. Stone & W. T. Tutte, The dissection of rectangles into squares, Duke Math. J., 7(1940) 312–340; MR 2, 153.MathSciNetCrossRefGoogle Scholar
  10. [10]
    R. H. Bruck & H. J. Ryser, The non-existence of certain finite projective planes, Canad. J. Math., 1(1949) 88–93; MR 10, 319.MathSciNetCrossRefGoogle Scholar
  11. [11]
    J. H. Conway, On Numbers and Games, Academic Press, London, 1976. [impartial games & Nim, chap. 11]zbMATHGoogle Scholar
  12. [12]
    J. H. Conway & N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer Grundlehren der mathematischen Wissenschaften 290, 1988. [Hamming code p. 80; Golay code, p. 84; Cayley numbers, p. 122; lexi-codes, p. 327]MathSciNetGoogle Scholar
  13. [13]
    J. H. Conway & N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Trans. Info. Theory, IT-32(1986) 337–348; MR 87f: 94049.MathSciNetCrossRefGoogle Scholar
  14. [14]
    H. S. M. Coxeter, The golden section, phyllotaxis and Wythoff’s game, Scripta Math., 19(1953) 135–143; MR 15, 2MathSciNetzbMATHGoogle Scholar
  15. [15]
    Hallard T. Croft, Kenneth J. Falconer & Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991. [C2 squaring the square; D10 packing spheres; E9-E13 lattice points]zbMATHCrossRefGoogle Scholar
  16. [16]
    R. O. Davies, On Langford’s problem, II, Math. Gaz., 43(1959) 253–255; MR 22 #5581.MathSciNetzbMATHGoogle Scholar
  17. [17]
    J. Dénes & A. D. Keedwell, Latin Squares and Their Applications, Academic Press, 1974.zbMATHGoogle Scholar
  18. [18]
    J. Doyen, Recent developments in the theory of Steiner systems, Atti dei Conv. Lincei, 17(1976) Tomo I, 277–285; MR 55 #10286. [excellent bibli-ography with many early items, previously overlooked]MathSciNetGoogle Scholar
  19. [19]
    A. J. W. Duyvestyn, Simple perfect squared square of lowest order, J. Combin. Theory Ser. B, 25(1978) 240–243; MR 80a: 05051.MathSciNetCrossRefGoogle Scholar
  20. [20]
    A. J. W. Duyvestyn, Simple perfect squared squares and 2x1 squared rectangles of order 25, Math. Comput., 62(1994) 325–332: MR 94c:05023 (fc see 05017). [Squares with the same elements differently arranged; squares whose largest element is not on the boundary.]Google Scholar
  21. [21]
    G. Fano, Sui postulati fondamentali della geometria proiettiva, Giom. Mat, 30(1892) 114–124. [the ‘Fano’ configuration was anticipated by Kirk-man in 1850 ]Google Scholar
  22. [22]
    Branko Grunbaum & G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987, [76–81 squaring the square, 531–583 Penrose aperiodic tiles]Google Scholar
  23. [23]
    P. M. Grundy, Mathematics and games, Eureka, 2(1939) 6–8; [Sprague-Grundy theory of impartial games]Google Scholar
  24. [24]
    Richard K. Guy, A many facetted problem of Zarankiewicz, in The Many Facets of Graph Theory, Springer, New York, 1969, 129–148; MR 41 #91. [adjacency matrices, incidence matrices, packing fc covering, Turan fc Ramsey problems, tournaments, steiner triples, affine fc projective planes, difference sets]MathSciNetCrossRefGoogle Scholar
  25. [25]
    Richard K. Guy, Packing [1, n] with solutions of ax + by = cz — the unity of combinatorics, Atti dei Conv. Lincei, 17(1976) Tomo II, 173–179; MR 57 #9565. [x + y = z, Langford-Skolem, Wythoff, Isaacs, Steiner, Hanani, Ringel, Zarankiewicz]MathSciNetGoogle Scholar
  26. [26]
    Richard K. Guy, The Penrose pieces, Bull London Math. Soc., 8 (1976) 9–10.Google Scholar
  27. [27]
    Richard K. Guy &c Cedric A. B. Smith, The G-values for various games, Proc. Cambridge Philos. Soc., 52(1956) 514–526; MR 18, 546.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    J. Hadamard, Resolution d’une question relative aux déterminants, Bull. Sci. Math.(2) 17(1893) 240–248. [Hadamard matrices]Google Scholar
  29. [29]
    R. W. Hamming, Error correcting and error detecting codes, Bell Sys. Tech. J., 29(1950) 147–160; MR 12, 35c.MathSciNetGoogle Scholar
  30. [30]
    H. Hanani, A note on Steiner triple systems, Math. Scand., 8(1960) 154–156; MR 23 #A2330.MathSciNetzbMATHGoogle Scholar
  31. [31]
    H. Hanani, On quadruple systems, Canad. J. Math., 12(1960) 145–157; MR 22 #2558.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    T. P. Kirkman, On a problem in combinations, Cambridge & Dublin Math. 2 (1847) 191–204.Google Scholar
  33. [33]
    T. P. Kirkman, Note on an unanswered prize question, Cambridge & Dublin Math. J., 5 (1850) 255–262.Google Scholar
  34. [34]
    T. P. Kirkman, On triads made with fifteen things, London, Edinburgh & Dublin Phil. Mag., 37 (1850) 169–171.Google Scholar
  35. [35]
    T. P. Kirkman, On the perfect r-partitions of N = r2 - r + 1, Trans. Historic Soc. Lanes. & Cheshire, 9(1856–57) 127–142.Google Scholar
  36. [36]
    T. P. Kirkman, On the puzzle of the fifteen young ladies, London, Edinburgh & Dublin Phil. Mag. (4), 23 (1862) 198–204.Google Scholar
  37. [37]
    Thomas Kövári, Vera Sós k Paul Turán, On a problem of K. Zarankiewicz, Colloq. Math., 3(1954) 50–57; MR 16, 456.zbMATHGoogle Scholar
  38. [38]
    C. Dudley Langford, Problem, Math. Gaz., 42 (1958) 228.Google Scholar
  39. [39]
    John Leech, Some sphere packings in higher space, Canad. Math. J., 5(1964) 657–682; MR 29 #5166; 19(1967) 251–267; MR 35 #878.MathSciNetCrossRefGoogle Scholar
  40. [40]
    Emma Lehmer, On residue difference sets, Canad. J. Math., 5(1953) 425–432; MR 15, 10.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    Al. A. Markov, On a certain combinatorial problem (Russian), Problemy Kibernetiki, 15(1965) 263–266; MR 35 #1497. [x + y = z]Google Scholar
  42. [42]
    R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.Sc. thesis, The Univ. of Calgary, 1975.Google Scholar
  43. [43]
    R. J. Nowakowski, Zarankiewicz’s problem, Ph.D. thesis, The Univ. of Calgary, 1978.Google Scholar
  44. [44]
    C. J. Priday, On Langford’s problem, I, Math. Gaz. 43(1959) 250–253; MR 22 #5580.MathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    D. K. Ray-Chaudhuri & R. M. Wilson, Solution of Kirkman’s schoolgirl problem, Proc. Symp. Pure Math., 19 Amer. Math. Soc. 1971, 187–203; MR 47 #3195.MathSciNetGoogle Scholar
  46. [46]
    G. Ringel, Die toioidale Dicke des vollstandigen Graphen, Math. Zeit., 87(1965) 19–26; MR 30 #2489.MathSciNetCrossRefGoogle Scholar
  47. [47]
    G. Ringel, Map Color Theorem, Grundlehren der math. Wissenschaften, 209, Springer, 1974.Google Scholar
  48. [48]
    G. Ringel & J. W. T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat Acad. Sci. U.S.A., 60(1968) 438–445; MR 37 #3959.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    G. Ringel & J. W. T. Youngs, Solution of the Heawood map-coloring problem — case 11, J. Combin. Theory, 7(1969) 71–93; MR 39 #1360; — case 2, 342–352; -case 8, 353–363; MR 41 #6723.MathSciNetCrossRefGoogle Scholar
  50. [50]
    A. Rosa, A note on Steiner triple systems (Slovak), Mat.-Fyz. Časopis Sloven. Akad. Vied, 16(1966) 285–290; MR 35 #2759. [x + y = z]MathSciNetzbMATHGoogle Scholar
  51. [51]
    H. J. Ryser, Combinatorial Mathematics, Carus Math. Monograph 14, Math. Assoc. Amer., 1963.Google Scholar
  52. [52]
    J. Sedláček, On a set system, Ann. New York Acad. Sci., 175(1970) 329–330; MR 42 #117. [x + y = z]MathSciNetzbMATHGoogle Scholar
  53. [53]
    J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., 43 (1938) 377–385.MathSciNetCrossRefGoogle Scholar
  54. [54]
    Th. A. Skolem, On certain distributions of integers in pairs with given differences, Math. Scand., 5(1957) 57–68; MR 19, 1159g.MathSciNetzbMATHGoogle Scholar
  55. [55]
    Th. A. Skolem, Some remarks on the triple systems of Steiner, Math. Scand., 6(1958) 273–280; MR 21 #5582.MathSciNetzbMATHGoogle Scholar
  56. [56]
    Th. A. Skolem, Über einige Eigenschaften der Zahlenmengen [αn + ß] bei irrationalem mit einleitenden Bemerkungen uber einige kombinatorische Probleme, Norske Vid. Selsk. Forh.f Trondheim, 30(1957) 42–49; MR 19, 1159i.MathSciNetGoogle Scholar
  57. [57]
    R. P. Sprague, Über mathematische Kampfspiele, Tôhoku Math. J., 41(1935–36) 438–444; Zbl. 13, 290. [Sprague-Grundy theory of impartial games]Google Scholar
  58. [58]
    R. P. Sprague, Beispiel einer Zerlegung des Quadrats in lauter verschiedene Quadrate, Math. Z., 45(1939) 607–608. [squaring the square]MathSciNetCrossRefGoogle Scholar
  59. [59]
    Thomas Storer, Cyclotomy and Difference Sets, Markham, Chicago, 1967.zbMATHGoogle Scholar
  60. [60]
    C. M. Terry, L. R. Welch & J. W. T. Youngs, Solution of the Heawood map-coloring problem — case 4, J. Combin. Theory, 8(1970) 170–174; MR 41 #3321.MathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    A. Tietäväinen, On the non-existence of perfect codes over finite fields, SIAM J. Appl. Math., 24(1973) 88–96; MR 48 #3609.MathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    Thomas M. Thompson, From Error-correcting Codes through Sphere Packings to Simple Groups, Carus Math. Monograph 21, Math. Assoc. Amer., 1983.Google Scholar
  63. [63]
    J. A. Todd, A combinatorial problem, J. Math, and Phys., 12 (1933) 321–323.zbMATHGoogle Scholar
  64. [64]
    W. S. B. Woolhouse, Prize question 1733, Lady’s and Gentleman’s Diary, 1844.Google Scholar
  65. [65]
    W. A. Wythoff, A modification of the game of Nim, Nieuw Arch, voor Wisk.(2), 7(1905-07) 199–202.Google Scholar
  66. [66]
    J. W. T. Youngs, Solution of the Heawood map-coloring problem — cases 3, 5, 6 and 9, J. Combin. Theory, 8(1970) 175–219; — cases 1, 7, and 10, 220–231; MR 41 #3322-3.MathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    K. Zarankiewicz, Problem P101, Colloq. Math., 2 (1951) 301.Google Scholar
  68. [68]
    Š. Znám, On a combinatorial problem of K. Zarankiewicz, Colloq. Math., 11(1963) 81–84; MR 29 #37; 13(1965) 255–258; MR 32 #7434.MathSciNetzbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Richard K. Guy
    • 1
  1. 1.University of Calgary CalgaryCalgaryCanada

Personalised recommendations