Advertisement

Some Mathematical Problems Arising in Molecular Bioinformatics: The Concept of Bioinformatics

  • Andreas Dress
Part of the Mathematics and Its Applications book series (MAIA, volume 329)

Abstract

The advent and the upkeep of life is intimately related to the generation, processing and propagation of information on the molecular level. To understand and to analyze the basic processes of life in a scientifically satisfying and pertinent way, the concept of information will have to be added, therefore, to the list of basic concepts like energy, matter, entropy, etc., developed and clarified in the natural sciences during the last centuries [1]. Information, even though it is encoded in terms of specific spatial and/or temporal forms, patterns, or structures of matter, cannot be identified with its physical carrier or host—just as a river or even a simple wave cannot be identified with the water it carries along.

Keywords

Sequence Space Sequence Family Numerical Invariant Isolation Index Spatial Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cf. e.g. L. Boltzmann, Wiss. Abh., ed. F. Haenoehrl ( Chelsea, New York, 1968 ).Google Scholar
  2. [2]
    C. Shannon and W. Weaver, The Mathematical Theory of Communication (U. Of 111. Press, Urbana-III., 1969 ), see also L. Brillouin, Science and Information Theory (Acad. Press, New York, 1971 ).Google Scholar
  3. [3]
    Cf. e.g. UPAC, Nomenclature of Organic/Inorganic Chemistry (Pergamon Press, Oxford, 1979/1981) or How to Name an Inorganic Substance ( Pergamon Press, Oxford, 1981 ).Google Scholar
  4. [4]
    R.W. Hamming, Bell Syst. Tech. J. 29, 147 (1950).MathSciNetGoogle Scholar
  5. [5]
    M. Eigen et al., Science 244, 673 (1989).CrossRefGoogle Scholar
  6. [6]
    M. Eigen et al., Proc. Natl. Acad. Sci. U.S.A. 85, 5913 (1988).MathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Eigen and K. Nieselt-Struwe, Aids 4 (suppl. 1), 885 (1990).CrossRefGoogle Scholar
  8. [8]
    A.W.M. Dress, Statistische Geometrie von Konfigurationen und deren Evolution in Sequenzräumen—Definition und Probleme; ein Program- mvorschlag, Preprint, Bielefeld (1986).Google Scholar
  9. [9]
    F. Klein, Das Erlanger Programm—vergleichende Betrachtungen über neuere geometrische Forschungen, ed. H. Wussing (Akad. Verl.-Ges. Geest & Portig, Leipzig, 1974 ).Google Scholar
  10. [10]
    Cf. e.g. L. Blumenthal, Theory and Applications of Distance Geometry (Chelsea Publ. Comp., Bronx-N.Y., 1970 ).Google Scholar
  11. [11]
    H.H. Bock, Automatische Klassifikation (Vandenhoeck and Ruprecht, Gottingen, 1974). M. Nei, Molecular Evolutionary Genetics (Columbia University Press, New York, 1987 ), A. Gordan, J.R. Statist. Soc. A 150, 119 (1987).Google Scholar
  12. [12]
    M.D. Hendy and D. Penny, Spectral Analysis of Phylogenetic Data, J. Classificatin 10, 5–24 (1993).zbMATHCrossRefGoogle Scholar
  13. [13]
    H.-J. Bandelt and A.W.M. Dress, Bull. Math. Biology 51, 133 (1989).MathSciNetzbMATHGoogle Scholar
  14. [14]
    H.-J. Bandelt and A.W.M. Dress, A Canonical Decomposition Theory for Metrics on a Finite Set, Advances in Mathematics 92, 47–105 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    J. Dopazo et al., Split Decomposition: a New Technique to Analyse Viral Evolution, PNAS 90 (1993).Google Scholar
  16. [16]
    J.M.S. Simões-Pereira, J. Combin. Theory Ser. B 6 303 (1969), P. Bunemann, J. Combin. Theory Ser. B 17, 48 (1974).zbMATHCrossRefGoogle Scholar
  17. [17]
    H.-J. Bandelt and A.W.M. Dress, Split Decomposition: A New and Useful Approach to Phylogenetic Analysis of Distance Data, Molecular Phylogenetics and Evolution, Vol. 1, No. 3, September, pp. 242–252, 1992.CrossRefGoogle Scholar
  18. [18]
    H. Leffers et al., J. Mol. Biol. 195, 43 (1987).CrossRefGoogle Scholar
  19. [19]
    A.W.M. Dress, in Ordnung aus dem Chaos, ed. B.O. Küppers ( Piper, Munchen Zürich, 1987 ), 103.Google Scholar
  20. [20]
    M. Eigen and P. Schuster, Naturwissenschaften 64, 541 (1977), 65, 341 (1978).CrossRefGoogle Scholar
  21. [21]
    M. Eigen et al., in Adv. Chem. Physics 75, 149, eds. I. Prigogine & S.A. Rice (John Wiley & Son, 1989); M. Eigen et al., J. Phys. Chem. 92, 6881 (1988).Google Scholar
  22. [22]
    M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1984 ).Google Scholar
  23. [23]
    S. Wright, in Proceedings 6th Congress on Genetics 1, 356 (1932), S. Kaufmann and S. Levin, J. Theor. Biol. 128, 11 (1987).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Andreas Dress
    • 1
  1. 1.Universität BielefeldGermany

Personalised recommendations