Advertisement

Construction Techniques for Mutually Orthogonal Latin Squares

  • Charles J. Colbourn
Part of the Mathematics and Its Applications book series (MAIA, volume 329)

Abstract

Recent developments concerning the construction of mutually orthogonal latin squares (MOLS) and incomplete MOLS are discussed. Some improvements in the number of MOLS are presented using Greig’s line-flip technique, and some new sets of incomplete MOLS found by computer search are presented. Finally, a variant of Wilson’s theorem is developed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.J.R. Abel, “Four mutually orthogonal latin squares of orders 28 and 52”, J. Combinat Theory (A) 58 (1991), 306–309.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    R.J.R. Abel, e-mail communications, 1994.Google Scholar
  3. [3]
    R.J.R. Abel and Y. W. Cheng, “Some new MOLS of order 2np for p a prime power”, Austral J. Combin. 10 (1994), 175–186.MathSciNetzbMATHGoogle Scholar
  4. [4]
    R.J.R. Abel and D.T. Todorov, “Four MOLS of order 20, 30, 38 and 44”, J. Combinat. Theory (A) 64 (1993), 144–148.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    R.D. Baker, “Whist tournaments”, Proc. Sixth Southeastern Conf. Cornbin., Graph Theory, Computing Utilitas Math. (1975) 89–100.Google Scholar
  6. [6]
    T. Beth, D. Jungniekel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.zbMATHGoogle Scholar
  7. [7]
    R.C. Bose, S.S. Shrikhande and E.T. Parker, “Further results on the construction of mutually orthogonal latin squares and the falsity of Euler’s conjecture”, Canad. J. Math. 12 (1960), 189–203.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    A.E. Brouwer and G.H.J, van Rees, “More mutually orthogonal latin squares”, Discrete Math. 39 (1982), 263–281.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    C.J. Colbourn, “Four MOLS of order 26”, J. Comb. Math. Comb. Comput., to appear.Google Scholar
  10. [10]
    C.J. Colbourn, “Some direct constructions for incomplete transversal designs”, J. Stat Plan. Infer., to appear.Google Scholar
  11. [11]
    C.J. Colbourn, J.H. Dinitz and M. Wojtas, “Thwarts in transversal designs”, Des. Codes Crypt, to appear.Google Scholar
  12. [12]
    B. Du, “On the existence of incomplete transversal designs with block size 5”, Discrete Math., to appear.Google Scholar
  13. [13]
    L. Euler, “Recherches sur une nouvelle espece de quarres magiques”, Verh. Zeeuw. Gen. Weten. Vlissengen 9 (1782), 85–239.Google Scholar
  14. [14]
    M. Greig, “Designs from configurations in projective planes”, preprint, 1992.Google Scholar
  15. [15]
    T.P. Kirkman, “On the perfect r-partitions of r2 — r + 1”, Transactions of the Historic Society of Lancashire and Cheshire (1850), 127–142.Google Scholar
  16. [16]
    D.M. Johnson, A.L. Dulmage and N.S. Mendelsohn, “Orthomorphisms of groups of orthogonal latin squares”, Canad. J. Math. 13 (1961), 356–372.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    H.F. MacNeish, “Euler squares”, Ann. Math. (NY) 23 (1922), 221–227.MathSciNetCrossRefGoogle Scholar
  18. [18]
    W.H. Mills, “Some mutually orthogonal latin squares”, Proc. Eighth S.E. Conf. Combin. Graph Theory Computing, 1977, pp. 473–487.Google Scholar
  19. [19]
    R.C. Muffin, P.J. Schellenberg, D.R. Stinson and S.A. Vanstone, “Some results on the existence of squares”, Ann. Discrete Math. 6 (1980), 257–274.MathSciNetCrossRefGoogle Scholar
  20. [20]
    A.V. Nazarok, “Five pairwise orthogonal latin squares of order 21”, Issled. oper. i ASU, 1991, pp. 54–56.Google Scholar
  21. [21]
    C.E. Roberts Jr., “Sets of mutually orthogonal latin squares with ‘like subsquares’ ”, J. Combinat Theory (A) 61 (1992) 50–65.zbMATHCrossRefGoogle Scholar
  22. [22]
    C.E. Roberts Jr., “Sets of mutually orthogonal latin squares with ‘like subsquares’ II”, preprint.Google Scholar
  23. [23]
    P.J. Schellenberg, G.H.J, van Rees and S.A. Vanstone, “Four pairwise or-thogonal latin squares of order 15”, Ars Combinat 6 (1978), 141–150.zbMATHGoogle Scholar
  24. [24]
    G. Tarry, “Le problème de 36 officiers”, Ass. Franc. Av. Sci. 29 (1900), 170–203.Google Scholar
  25. [25]
    D.T. Todorov, “Three mutually orthogonal latin squares of order 14”, Ars Combinat. 20 (1985), 45–48.zbMATHGoogle Scholar
  26. [26]
    D.T. Todorov, “Four mutually orthogonal latin squares of order 20”, Ars Combinai. 27 (1989), 63–65.zbMATHGoogle Scholar
  27. [27]
    G.H.J, van Rees, private communication, 1994.Google Scholar
  28. [28]
    S.P. Wang, On self-orthogonal latin squares and partial transversals of latin squares, Ph.D. thesis, Ohio State University, 1978.Google Scholar
  29. [29]
    R.M. Wilson, “A few more squares”, Proc. Fifth Southeastern Conf Combin. Graph Theory Computing (1974), pp. 675–680.Google Scholar
  30. [30]
    R.M. Wilson, “Concerning the number of mutually orthogonal latin squares”, Discrete Math. 9 (1974), 181–198.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    M. Wojtas, “Some new matrices-minus-diagonal and MOLS”, Discrete Math. 76 (1989) 291–292.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    M. Wojtas, “Five mutually orthogonal latin squares of orders 24 and 40”, preprint.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Charles J. Colbourn
    • 1
  1. 1.Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations