Advertisement

Exploring the Spectrum of Values of Permanents by Simulated Annealing

  • Yaghout Nourani
Part of the Mathematics and Its Applications book series (MAIA, volume 329)

Abstract

This work presents results for computing the values of permanents of fully indecomposable (0,1)-matrices. There exists an interesting and only partially understood spectrum of possible values for the permanent of a (0,1)-matrix with given topological dimension d. The present work is an experimental study of this spectrum using the handle basis representation of directed graphs and the Monte Carlo based optimization method simulated annealing to sample the possible values. The approach represents an importance sampling technique to focus the search for new values. The results from these experiments show that there exist gaps in the spectrum of values of the permanent.

Keywords

Directed Graph Hill Climbing Acceptance Probability Metropolis Algorithm Acceptance Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. L. Cauchy,”Memoire sur les fonctions qui ne peuvent obtenir que deux valeurs egales et de signs contraires par suite des transpositions operees entre les variables quelles renferment”, J. Ec. Polyt. 10 Cah. 17, 29–112, Oeuvres (2)i.Google Scholar
  2. [2]
    R. M. Karp,”Reducibility among combinatorial problems”, in R. E. Miller and J. W. Thatcher, (Eds.) Complexity of computer computations ( Plenum Press, New York, 1972 ), 85–103.Google Scholar
  3. [3]
    L. G. Valiant, “The complexity of computing the permanent”, Theor. Comput. Sci. 8, 189–201 (1978).MathSciNetCrossRefGoogle Scholar
  4. [4]
    M. R. Garey and D. S. Johnson, Computers and Intractability, A guide to the Theory of NP-Completeness (W. H. Freeman and Company, New York, 1979 ).zbMATHGoogle Scholar
  5. [5]
    H. Mine, Permanents, Encyclopedia of mathematics and its applications, v. 6, section on Linear algebra (Addison-Wesley, 1978 ).Google Scholar
  6. [6]
    J. Donald and J. Elwin, “On The Structure Of The Strong Orientation Of A Graph”, SIAM J. Disc. MATH. 9, No. 1, 30–43, (February 1993).MathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Donald, J. Elwin, R. Hager, and P. Salamon, “Handle bases and bounds on the number of subgraphs”, J. Combin. Theory, Ser. B, 42 1–13 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    J. Donald, J. Elwin, R. Hager, and P. Salamon, “A Graph Theoretic Upper Bound on the Permanent of a Nonnegative Integer Matrix”, I, II, Linear Algebra and its Applications 61, 187–198 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    A. Nijenhuis and H. Wilf, Combinatorial Algorithms ( Academic Press, Inc., 1975 ).zbMATHGoogle Scholar
  10. [10]
    N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,”Equation of state calculation by fast computing machines”, J. Chem. Phys. 21, 1087–1092 (1953).Google Scholar
  11. [11]
    P. J Van Laarhoven and E. H. L. Aarts, Simulated Annealing and Applications (D. Reidel Publishing Company, 1987 ).Google Scholar
  12. [12]
    R. H. J. M Otten and L. P. P. P. Van Ginneken, The Annealing Algorithm (Kluwer Academic Publishers, 1989 ).Google Scholar
  13. [13]
    R. G. Kemeny and J. L. Snell, Finite Markov chains (D. Van Nostrand Company, Inc., 1960 ).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Yaghout Nourani
    • 1
  1. 1.Ørsted Laboratory, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations